9514 1404 393
Answer:
x ∈ {{0.30773985, 1.26305647, 1.87853618, 2.83385280, 3.44933251, 4.40464913, 5.02012883, 5.97544545}
Explanation:
Divide by the coefficient of the sine function, take the root, then use the arcsine function to find the angles.
![3\sin^2(2x)=1\\\\\sin^2(2x)=(1)/(3)\\\\ \sin(2x)=\pm\sqrt{(1)/(3)}\\\\2x=\pm\arcsin\left((√(3))/(3)\right)+n\pi\\\\x=(\pm\arcsin\left((√(3))/(3)\right)+n\pi)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/7kr6uswhkfwuyo98h0e6ivzcrzsx0trzdm.png)
The numerical values are approximately ...
x ∈ {{0.30773985, 1.26305647, 1.87853618, 2.83385280, 3.44933251, 4.40464913, 5.02012883, 5.97544545}
__
The graph shows the zeros of 3sin²(2x) -1.