Answer:
There will be sufficient evidence to conclude. A further explanation is provided below.
Explanation:
The given values are:



As we know,



The standard deviation will be:
⇒

On substituting the values, we get
⇒
![=\sqrt{(1)/(10-1) [(6.5-7.15)^2+...(7.7-7.15)^2]}](https://img.qammunity.org/2022/formulas/mathematics/high-school/utg94xrsvpmgi2gnfva4nxm67w53kf16d3.png)
⇒
![=\sqrt{(1)/(9) [(6.5-7.15)^2+...(7.7-7.15)^2]}](https://img.qammunity.org/2022/formulas/mathematics/high-school/bcys55llptifccuppflnfgeeeoh8nf33re.png)
⇒

According to the question,
Hypotheses:

The test statistic will be:
⇒

⇒

⇒

⇒

Thus the above is the correct response.