81.8k views
4 votes
The edge of a cube was found to be 15 cm with a possible error in measurement of 0.2 cm. Use differentials to estimate the maximum possible error, relative error, and percentage error in computing the volume of the cube and the surface area of the cube. (a) the volume of the cube maximum possible error (in cm3) cm3 relative error (rounded to four decimal places) percentage error (rounded to two decimal places) % (b) the surface area of the cube maximum possible error (in cm2) cm2 relative error (rounded to four decimal places) percentage error (rounded to two decimal places) %

1 Answer

5 votes

Answer:


(a)


Maximum\ Error = 27


Relative\ Error = 0.008


Percentage\ Error = 0.8\%


(b)


Maximum\ Error = 36


Relative\ Error = 0.0267


Percentage\ Error = 2.67\%

Explanation:

Given


x = 15 -- edge length


\triangle x = 0.2 -- possible error

Solving (a): Errors in volume

The volume of a cube is:


V(x) = x^3

Differentiate


(dV)/(dx) = 3x^2

Make dV the subject


dV =3x^2dx

Rewrite as:


\triangle V = 3x^2 \triangle x

Substitute values for x and
\triangle x


\triangle V = 3 * 15^2 * 0.2^2


\triangle V = 27

Hence:


Maximum\ Error = 27

The relative error is then calculated as:


Relative\ Error = (Maximum\ Error)/(Volume)


Relative\ Error = (27)/(x^3)


Relative\ Error = (27)/(15^3)


Relative\ Error = (27)/(3375)


Relative\ Error = 0.008

The percentage error is:


Percentage\ Error = Relative\ Error * 100\%


Percentage\ Error = 0.008 * 100\%


Percentage\ Error = 0.8\%

Solving (a): Errors in Surface Area

The volume of a cube is:


A(x) =6x^2

Differentiate


(dA)/(dx) =12x

Make dA the subject


dA = 12xdx

Rewrite as:


\triangle A =12x\triangle x

Substitute values for x and
\triangle x


\triangle A =12 *15 * 0.2


\triangle A =36

Hence:


Maximum\ Error = 36

The relative error is then calculated as:


Relative\ Error = (Maximum\ Error)/(Surface\ Area)


Relative\ Error = (36)/(6x^2)


Relative\ Error = (36)/(6*15^2)


Relative\ Error = (36)/(1350)


Relative\ Error = 0.0267

The percentage error is:


Percentage\ Error = Relative\ Error * 100\%


Percentage\ Error = 0.0267* 100\%


Percentage\ Error = 2.67\%

User Dinh Quan
by
4.9k points