Answer:
First you should see that the 2s cancel out. The equation becomes:
ln( e^{ln(5x)} ) = ln15ln(e
ln(5x)
)=ln15
Use the laws of logarithms, knowing that ln(e) = 1.
\begin{gathered}ln(5x) = ln(15) \\ 5x = 15 \\ x = 3\end{gathered}
ln(5x)=ln(15)
5x=15
x=3
The answer is B.
Hopefully this helps!
Explanation:
x=3
Explanation:
Given in an equation as
2 ln e^ln5x=2 ln 152lne
l
n5x=2ln15
Divide 2 to get
ln e^ln5x= ln 15lne
l
n5x=ln15
Using log rules for exponents we get
ln 5x = ln 15
Cancel ln to get
5x=15x=35x=15x=3
Hence solutin is x=3