Answer: two times
Explanation:
Given
height of cone A and B
![h_a=h_b=5\ in.](https://img.qammunity.org/2022/formulas/mathematics/high-school/sm8ucr796a08qtzwazq0bhbopd2nh9w6kn.png)
The volume of cone A
![V_a=20.9\ in.^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/cwpv7gkv81b4ayyeoh2blc5ck509fa6355.png)
The volume of cone B is 4 times of cone A
the volume of a cone is
![(1)/(3)\pi r^2h](https://img.qammunity.org/2022/formulas/mathematics/high-school/9s5u6ry16yb3e9cwpqrk8fvex46gre87g3.png)
The volume of cone A
![V_a=(1)/(3)\pi r_a^2h_a=20.9\quad \ldots(i)](https://img.qammunity.org/2022/formulas/mathematics/high-school/lrnycytt5k8r76gyklu6dyjn1kv9c7oz3r.png)
The volume of cone B
![V_b=(1)/(3)\pi r_b^2h_b=4* 20.9\quad \ldots(ii)](https://img.qammunity.org/2022/formulas/mathematics/high-school/fzuhedyf7cqaexnqii24my7647claoqgpv.png)
divide (i) and (ii) we get
![\Rightarrow (r_a^2)/(r_b^2)=(1)/(4)\\\Rightarrow (r_a)/(r_b)=\sqrt{(1)/(4)}=(1)/(2)\\\Rightarrow (d_a)/(d_b)=(1)/(2)\\\Rightarrow d_b=2d_a](https://img.qammunity.org/2022/formulas/mathematics/high-school/h5fkjb0blrmbdhh3h48daf0t6cjxqn05w0.png)
thus, diameter of cone B is twice the diameter of A