Answer:
for
![f(z) =(6)/(6 - z)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ggz4pch33gbhrw49f8cap4i0x7fdxww8mm.png)
Explanation:
Given
![1+(z)/(6)+(z^2)/(36)+(z^3)/(216)+.....](https://img.qammunity.org/2022/formulas/mathematics/high-school/v0ulgb89d5602q636tevhga9602yuboypj.png)
Required
The value at which the series converges
Calculate r
![r = (z)/(6)/1](https://img.qammunity.org/2022/formulas/mathematics/high-school/lre1lfb00zf7736uo7vj4a967mr5m4kt0p.png)
![r = (z)/(6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/jk5u4sg2zgm1f6ay9oz6akuogy6l17hz9d.png)
For a series to converge:
![|r| < 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/qpieuk3v7ogq9sc2rxxrc1dqfu247p5vik.png)
This gives:
![|(z)/(6)| < 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/ehdssc3o0xwv6t95ntsqrs0959nn2jkei9.png)
![(1)/(6)|z| < 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/w4z04ia0z3t9apzj82i22w8jh0zs3kkm21.png)
Multiply both sides by 6
![6 * (1)/(6)|z| < 1 * 6](https://img.qammunity.org/2022/formulas/mathematics/high-school/3iqkemhwpiyzcic09wnyl8om66bv9b97ei.png)
![|z| < 6](https://img.qammunity.org/2022/formulas/mathematics/high-school/7aopdd8tgvdo80l5mdjj3r8kmterdq8stz.png)
This is calculated using the sum to infinity of a gp.
![S = (a)/(1- r)](https://img.qammunity.org/2022/formulas/mathematics/high-school/qwlmqjeroe5jip767we165istfsrt3ql2u.png)
Where
![a=1](https://img.qammunity.org/2022/formulas/mathematics/college/c79d6klayjjr9h58bxtc764pcftq1362do.png)
So:
![S = (1)/(1 - (z)/(6))](https://img.qammunity.org/2022/formulas/mathematics/high-school/721tag28ktzduav8vmx2qmsxzm3ydtinxg.png)
Take LCM
![S = (1)/((6 - z)/(6))](https://img.qammunity.org/2022/formulas/mathematics/high-school/6vs0q7u1c4bd0op8rytj7ets1s6ejkecio.png)
Rewrite as:
![S = 1 * {(6)/(6 - z)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/zwa4j4diuogsd3mpk7r5v4knz9eic4jb1c.png)
![S =(6)/(6 - z)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ca564yzar2jtdualsp8kq1b9o6t2u8x0a9.png)
So, the function converges at:
for
![f(z) =(6)/(6 - z)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ggz4pch33gbhrw49f8cap4i0x7fdxww8mm.png)