Answer:
(0.1361 ; 0.2239)
Explanation:
n1 = 1400 ; p1 = 0.50 ; n2 = 1320 ; p2 = 0.38
Confidence interval = mean ± margin of error
Mean = p1 - p2
Point estimate :
p1 - p2 = 0.50 - 0.38 = 0.18
Margin of Error (MOE) = Zcritical * S. E
Standard Error(S. E) :
Sqrt[(p1(1-p1)/n1) + (p2(1-p2)/n2)]
(p1(1-p1)/n1) = 0.50(0.50) / 1400 = 0.0001785
(p2(1-p2)/n2) = 0.38(0.62) / 1320 = 0.0001784
S. E = sqrt(0.0001785 + 0.0001784)
S. E = sqrt(0.0003569)
S. E = 0.0188917
Zcritical at 98% = 2.326
MOE = Zcritical * S. E
MOE = 2.326 * 0.0188917
MOE = 0.0439420942
MOE = 0.0439
Confidence interval = mean ± margin of error
Confidence interval = 0.18 ± 0.0439
Lower boundary = (0.18 - 0.0439) = 0.1361
Upper boundary = (0.18 + 0.0439) = 0.2239
(0.1361 ; 0.2239)