46.1k views
0 votes
Solve the above que no. 55

Solve the above que no. 55-example-1
User Virgie
by
5.0k points

1 Answer

4 votes

Answer:

Let
\left(1+(1)/(\tan^(2)A) \right)\cdot \left(1+(1)/(\cot^(2)A) \right), we proceed to prove the trigonometric expression by trigonometric identity:

1)
\left(1+(1)/(\tan^(2)A) \right)\cdot \left(1+(1)/(\cot^(2)A) \right) Given

2)
\left(1+(\cos^(2)A)/(\sin^(2)A) \right)\cdot \left(1+(\sin^(2)A)/(\cos^(2)A) \right)
\tan A = (1)/(\cot A) = (\sin A)/(\cos A)

3)
\left((\sin^(2)A+\cos^(2)A)/(\sin^(2)A) \right)\cdot \left((\cos^(2)A+\sin^(2)A)/(\cos^(2)A) \right)

4)
\left((1)/(\sin^(2)A) \right)\cdot \left((1)/(\cos^(2)A) \right)
\sin^(2)A+\cos^(2)A = 1

5)
(1)/(\sin^(2)A\cdot \cos^(2)A)

6)
(1)/(\sin^(2)A\cdot (1-\sin^(2)A))
\sin^(2)A+\cos^(2)A = 1

7)
(1)/(\sin^(2)A-\sin^(4)A) Result

Explanation:

Let
\left(1+(1)/(\tan^(2)A) \right)\cdot \left(1+(1)/(\cot^(2)A) \right), we proceed to prove the trigonometric expression by trigonometric identity:

1)
\left(1+(1)/(\tan^(2)A) \right)\cdot \left(1+(1)/(\cot^(2)A) \right) Given

2)
\left(1+(\cos^(2)A)/(\sin^(2)A) \right)\cdot \left(1+(\sin^(2)A)/(\cos^(2)A) \right)
\tan A = (1)/(\cot A) = (\sin A)/(\cos A)

3)
\left((\sin^(2)A+\cos^(2)A)/(\sin^(2)A) \right)\cdot \left((\cos^(2)A+\sin^(2)A)/(\cos^(2)A) \right)

4)
\left((1)/(\sin^(2)A) \right)\cdot \left((1)/(\cos^(2)A) \right)
\sin^(2)A+\cos^(2)A = 1

5)
(1)/(\sin^(2)A\cdot \cos^(2)A)

6)
(1)/(\sin^(2)A\cdot (1-\sin^(2)A))
\sin^(2)A+\cos^(2)A = 1

7)
(1)/(\sin^(2)A-\sin^(4)A) Result

User Caleb Keith
by
5.9k points