Answer:
Let
, we proceed to prove the trigonometric expression by trigonometric identity:
1)
Given
2)
![\tan A = (1)/(\cot A) = (\sin A)/(\cos A)](https://img.qammunity.org/2022/formulas/mathematics/high-school/naatx1pg7onmknjr84umtaoy7r1kj2sxhz.png)
3)
4)
![\sin^(2)A+\cos^(2)A = 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/2lsw6thhw7x96znawsiofwcew61nqv09hh.png)
5)
![(1)/(\sin^(2)A\cdot \cos^(2)A)](https://img.qammunity.org/2022/formulas/mathematics/high-school/9y57p9l2rf5x8z8fpmgx7s8mb9d2re6920.png)
6)
![\sin^(2)A+\cos^(2)A = 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/2lsw6thhw7x96znawsiofwcew61nqv09hh.png)
7)
Result
Explanation:
Let
, we proceed to prove the trigonometric expression by trigonometric identity:
1)
Given
2)
![\tan A = (1)/(\cot A) = (\sin A)/(\cos A)](https://img.qammunity.org/2022/formulas/mathematics/high-school/naatx1pg7onmknjr84umtaoy7r1kj2sxhz.png)
3)
4)
![\sin^(2)A+\cos^(2)A = 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/2lsw6thhw7x96znawsiofwcew61nqv09hh.png)
5)
![(1)/(\sin^(2)A\cdot \cos^(2)A)](https://img.qammunity.org/2022/formulas/mathematics/high-school/9y57p9l2rf5x8z8fpmgx7s8mb9d2re6920.png)
6)
![\sin^(2)A+\cos^(2)A = 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/2lsw6thhw7x96znawsiofwcew61nqv09hh.png)
7)
Result