Answer:
Kindly check attached picture ;
(999.494 ; 1046.056) ;
(1003.235 ; 1042.315)
Explanation:
Given the data:
888, 920, 929, 938, 942, 946, 964, 964, 970, 975, 976, 980, 984, 990, 992, 992, 993, 996, 1000, 1004, 1009, 1012, 1017, 1025, 1030, 1035, 1038, 1047, 1050, 1060, 1061, 1067, 1095, 1095, 1100, 1100, 1125, 1164, 1178, 1260
Using calculator to obtain the mean and standard deviation :
Mean, x = 1022.775
Standard deviation, s = 75.124
Sample size, n = 40
Zcritical at 95% = 1.96
Zcritical at 90% = 1.645
Using the relation :
x ± E
E = error margin = Zcritical * s / sqrt(n)
At 95% ;
Error margin = 1.96 * 75.124/ sqrt(40) = 23.281
At 90% ;
Error margin = 1.645 * 75.124/ sqrt(40) = 19.540
Confidence interval at 95%:
(1022.775 - 23.281) ;(1022.775 + 23.281)
(999.494 ; 1046.056)
Confidence interval at 90%:
(1022.775 - 19.540) ;(1022.775 + 19.540)
(1003.235 ; 1042.315)