232k views
2 votes
A particle moves along a horizontal line so that its position at time t, t ≥ 0, is given by

s(t) = 40 + te^−t/20.
Find the minimum velocity of the particle for 0 ≤ t ≤ 100.

1 Answer

3 votes

Answer:

The minimum velocity of the particle =
-e^(-2 ) units

Explanation:

Given - A particle moves along a horizontal line so that its position at time t,

t ≥ 0, is given by s(t) = 40 + te^−t/20.

To find - Find the minimum velocity of the particle for 0 ≤ t ≤ 100.

Proof -

Velocity, v(t) =
(d)/(dt)(40 + te^{-(t)/(20) } )

Now,


(d)/(dt)(40 + te^{-(t)/(20) } ) =
(d)/(dt)(40 ) + (d)/(dt)(te^{-(t)/(20) } )

= 0 +
t(d)/(dt)(e^{-(t)/(20) } ) + e^{-(t)/(20) }(d)/(dt)(t )

=
t(-(1)/(20) )e^{-(t)/(20) } + e^{-(t)/(20) }

⇒v(t) =
-(t)/(20)e^{-(t)/(20) } + e^{-(t)/(20) }

Now,

For minimum velocity, Put
(d)/(dt)(v(t)) = 0

Now,


(d)/(dt)[v(t)] = (d)/(dt) [ -(t)/(20)e^{-(t)/(20) } + e^{-(t)/(20) } ]

=
-(2)/(20) e^{-(t)/(20) } + (t)/(400) e^{-(t)/(20) }

Now,

Put
(d)/(dt)(v(t)) = 0, we get


-(2)/(20) = - (t)/(400)

⇒t = 40

Now,

Check that the point is minimum or maximum

Calculate
(d^(2) )/(dt^(2) ) [v(t)]

Now,


(d^(2) )/(dt^(2) ) [v(t)] =
(d)/(dt) [ -(2)/(20) e^{-(t)/(20) } + (t)/(400) e^{-(t)/(20) }]

=
(1)/(400)e^{- (t)/(20) } [ 3 - (t)/(20)]


(d^(2) )/(dt^(2) ) [v(t)] =
(1)/(400)e^{- (t)/(20) } [ 3 - (t)/(20)] > 0

∴ we get

t = 40 is point of minimum

So,

The minimum velocity be

v(40) =
-(40)/(20)e^{-(40)/(20) } + e^{-(40)/(20) }

=
-2e^(-2 ) + e^(-2 )

=
-e^(-2 )

⇒v(40) =
-e^(-2 ) units

∴ we get

The minimum velocity of the particle =
-e^(-2 ) units

User Jaffer
by
5.2k points