Answer:
The minimum velocity of the particle =
units
Explanation:
Given - A particle moves along a horizontal line so that its position at time t,
t ≥ 0, is given by s(t) = 40 + te^−t/20.
To find - Find the minimum velocity of the particle for 0 ≤ t ≤ 100.
Proof -
Velocity, v(t) =
![(d)/(dt)(40 + te^{-(t)/(20) } )](https://img.qammunity.org/2022/formulas/mathematics/college/zssgpqvfabbtv6g72tj4s51nn1iqps1dmv.png)
Now,
=
![(d)/(dt)(40 ) + (d)/(dt)(te^{-(t)/(20) } )](https://img.qammunity.org/2022/formulas/mathematics/college/1uvbrsqve1o50lrkhqch9hopru0z5zwo5g.png)
= 0 +
![t(d)/(dt)(e^{-(t)/(20) } ) + e^{-(t)/(20) }(d)/(dt)(t )](https://img.qammunity.org/2022/formulas/mathematics/college/rolxqchezp2c2ww1p6jwl3pvyu3zc40m9c.png)
=
![t(-(1)/(20) )e^{-(t)/(20) } + e^{-(t)/(20) }](https://img.qammunity.org/2022/formulas/mathematics/college/yce1twwsv8xwq91zr1t5740hgq4rq1iteq.png)
⇒v(t) =
![-(t)/(20)e^{-(t)/(20) } + e^{-(t)/(20) }](https://img.qammunity.org/2022/formulas/mathematics/college/a2vhdkp7gs7marn164bwq60g6t6w2nd0w0.png)
Now,
For minimum velocity, Put
![(d)/(dt)(v(t)) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/1d4t2825o2ua3gc27qoj20vnd0fdkfqegu.png)
Now,
![(d)/(dt)[v(t)] = (d)/(dt) [ -(t)/(20)e^{-(t)/(20) } + e^{-(t)/(20) } ]](https://img.qammunity.org/2022/formulas/mathematics/college/epy4jo427dwc2rm83xw66yooikp55v8bf3.png)
=
![-(2)/(20) e^{-(t)/(20) } + (t)/(400) e^{-(t)/(20) }](https://img.qammunity.org/2022/formulas/mathematics/college/3hbilqyu6zwsa4j4j1aonedsioht4ew5q1.png)
Now,
Put
, we get
![-(2)/(20) = - (t)/(400)](https://img.qammunity.org/2022/formulas/mathematics/college/38oaaxev8w4axmmfgwhtrgbwscv1b9e01h.png)
⇒t = 40
Now,
Check that the point is minimum or maximum
Calculate
![(d^(2) )/(dt^(2) ) [v(t)]](https://img.qammunity.org/2022/formulas/mathematics/college/yzjw3vyz1gymqn3bvt6808f5fznio4yjji.png)
Now,
=
![(d)/(dt) [ -(2)/(20) e^{-(t)/(20) } + (t)/(400) e^{-(t)/(20) }]](https://img.qammunity.org/2022/formulas/mathematics/college/jxy0m4r8gv6ij5zu5p2wqo58j205fo4y5i.png)
=
![(1)/(400)e^{- (t)/(20) } [ 3 - (t)/(20)]](https://img.qammunity.org/2022/formulas/mathematics/college/mthzfv37kxsyclh34pdjd8k3efwvvke30h.png)
⇒
=
> 0
∴ we get
t = 40 is point of minimum
So,
The minimum velocity be
v(40) =
![-(40)/(20)e^{-(40)/(20) } + e^{-(40)/(20) }](https://img.qammunity.org/2022/formulas/mathematics/college/jccltcegawd9de79np2v9m3tolc213dg7j.png)
=
![-2e^(-2 ) + e^(-2 )](https://img.qammunity.org/2022/formulas/mathematics/college/uwmjjtkxjigq683af621ph3g4msrebzl2s.png)
=
![-e^(-2 )](https://img.qammunity.org/2022/formulas/mathematics/college/y6rh6wk4dz4gktjc7zm8vtujx1ajhgessp.png)
⇒v(40) =
units
∴ we get
The minimum velocity of the particle =
units