Answer:
![\boxed {\boxed {\sf m=2}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/9huqyjq1klfdjgizz60f4u1drfva7kukss.png)
Explanation:
The formula for slope is:
![m= \frac {y_2-y_1}{x_2-x_1}](https://img.qammunity.org/2022/formulas/mathematics/high-school/vrtt791lnqzkhljybg30d5lj0dvgy3gome.png)
where (x₁, y₁) and (x₂, y₂) are the points on the line.
We are given the points (-3,1) and (-1,5). Therefore,
![x_1= -3 \\y_1= 1 \\x_2= -1 \\y_2=5](https://img.qammunity.org/2022/formulas/mathematics/high-school/kee8v7g5k2uelhx2vnjoiszspvhqr78rio.png)
Substitute the values into the formula.
![m= \frac {5-1}{-1--3}](https://img.qammunity.org/2022/formulas/mathematics/high-school/59lz7c3apfxywiacdixpqft4dh96l2gkuj.png)
Solve the numerator.
![m= (4)/(-1--3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/31dsjs010btguaa3q5jrlblma5kl3gd7qf.png)
Solve the denominator.
![m=(4)/(2) \\](https://img.qammunity.org/2022/formulas/mathematics/high-school/1l72txaa7hrv9lb7rymr9vbisvn0a7cpee.png)
Divide.
![m=2](https://img.qammunity.org/2022/formulas/mathematics/high-school/4wcg64h1she4pkwrimc8eyz80lm6xtudg6.png)
The slope of the line is 2.