Answer:
Volume of the given pyramid = 1122.37 cubic feet
Explanation:
Volume of the regular hexagonal pyramid =
![(1)/(3)(\text{Area of the base})(\text{Base})](https://img.qammunity.org/2022/formulas/mathematics/high-school/cwgxgdn24722jmto6riejkt2ee1xm8rajf.png)
Measure of internal angle of a polygon =
![((n-2)* 180)/(n)](https://img.qammunity.org/2022/formulas/mathematics/high-school/gvnrnsibsbrmymqns5f6teqq1y14rllo0x.png)
Here, n = number of sides of the polygon
For a hexagon, n = 6
Measure of interior ∠C =
![((6-2)* 180)/(6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/6ghef3vq8jst5qyamqrci7wmm6xfcvoxwz.png)
= 120°
Measure of ∠BCD =
![(120)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7ss258z9crybm0492hdaaru64clh2ldp95.png)
= 60°
By applying tangent rule in ΔCED,
tan(∠ECD) =
![\frac{\text{Opposite side}}{\text{Adjacent side}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/vukhjusqid9fxo3jewnsqt435z0du43agl.png)
tan(60°) =
![(DE)/(CE)](https://img.qammunity.org/2022/formulas/mathematics/high-school/qm1yyiiarqvhuyfkp8p178jfbjhmq3n5r9.png)
![√(3)=(DE)/(6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/guwusi79ukyfc4z451jw485g9jgn4c2fot.png)
DE =
feet
And cos(60°) =
![(EC)/(CD)](https://img.qammunity.org/2022/formulas/mathematics/high-school/eyta4ctzaca4usgz142uwfrqt2lgchi4d4.png)
![(1)/(2)=(6)/(CD)](https://img.qammunity.org/2022/formulas/mathematics/high-school/dack81s9y5cbdnfetfyz4kihcbndzwee25.png)
CD = 12 feet
Area of ΔBCD =
![(1)/(2)(\text{Base})(\text{Height})](https://img.qammunity.org/2022/formulas/mathematics/college/97fcejc0jdbuj7ev2e4q1s1faquo9o9lht.png)
=
![(1)/(2)(6√(3))(12)](https://img.qammunity.org/2022/formulas/mathematics/high-school/u6y2spofvd3xd2o7pt2wt5hiifksgs7z8j.png)
=
feet
Area of hexagonal Base of the pyramid =
![6(36√(3))](https://img.qammunity.org/2022/formulas/mathematics/high-school/u94qqmqusyda6nrxzod7ujw0xkg0mw3zas.png)
= 216√3 square feet
Since, lateral height of the pyramid (AC) = 15 feet
By applying Pythagoras theorem in ΔADC,
AC² = AD² + CD²
(15)² = AD² + (12)²
AD =
![√(225-144)](https://img.qammunity.org/2022/formulas/mathematics/high-school/hjbwq1q817pjvc0d8klajarjrd9hcytuip.png)
AD = 9 feet
Volume of the given pyramid =
![(1)/(3)(216√(3))(9)](https://img.qammunity.org/2022/formulas/mathematics/high-school/82viu6ubg1jwqpywmiq9kxyht0gho4rpom.png)
= 648√3 cubic feet
= 1122.37 cubic feet