Answer:
![t_(1/2)=375.5min](https://img.qammunity.org/2022/formulas/chemistry/college/2gjo9ixsjj4w3v61coq37qorehufgd0d3k.png)
Step-by-step explanation:
Hello!
In this case, since this problem refers to two different temperatures, it is possible to compute the rate constant at 652 K given the half-life at such temperature:
![k=(ln(2))/(58.0 min)=0.0120min^(-1)](https://img.qammunity.org/2022/formulas/chemistry/college/aq6hmdcntdqo0i1vmon6nfefmaraim9qil.png)
Next, by using the T-variable version of the Arrhenius equation, we can compute the rate constant at 623 K:
![ln((k_2)/(k_1) )=-(Ea)/(R)((1)/(T_2)-(1)/(T_1) ) \\\\ln((k_2)/(k_1) )=-(218000J/mol)/(8.3145(J)/(mol*K))((1)/(623K)-(1)/(652K))\\\\ln((k_2)/(k_1) )=-1.872\\\\k_2=0.0120min^(-1)exp(-1.872)\\\\k_2=0.00185min^(-1)](https://img.qammunity.org/2022/formulas/chemistry/college/tknaz8l6m0ziaopds9z638fwv576fnqjp2.png)
Finally, the half-life at 623 K turns out to be:
![t_(1/2)=(ln(2))/(0.00185min^(-1)) \\\\t_(1/2)=375.5min](https://img.qammunity.org/2022/formulas/chemistry/college/clfivquun4ptkmz8ezqxhopssv9l7qjfex.png)
Best regards!