168k views
1 vote
If 64^x=1/256^y then the value of 3x+4y is​

User Florieger
by
4.3k points

1 Answer

5 votes

Given,


\longrightarrow\rm{64^x=(1)/(256^y)}

We have to find out the value of 3x + 4y.

Multiplying both sides by
\rm{256^y} we get,


\longrightarrow\rm{64^x\cdot256^y=1}

Then we will write 64 and 256 as powers of 4 as,


\rm{64=4^3}


256=4^4

Then,


\longrightarrow\rm{(4^3)^x\cdot(4^4)^y=1}


\longrightarrow\rm{4^(3x)\cdot4^(4y)=1\quad\quad[\because(a^m)^n=a^(mn)]}


\longrightarrow\rm{4^(3x+4y)=1\quad\quad[\because a^m\cdot a^n=a^(m+n)]}

Now we will take log to the base 4.


\longrightarrow\rm{\log_4(4^(3x+4y))=\log_4(1)}


\small\text{$\longrightarrow\rm{(3x+4y)\log_4(4)=\log_4(1)\quad\quad[\because\log_b(a^m)=m\cdot\log_b(a)]}$}

We have,


\rm{\log_4(4)=1}


\log_4(1)=0

Then,


\longrightarrow\rm{(3x+4y)(1)=0}


\longrightarrow\rm{\underline{\underline{3x+4y=0}}}

Hence 0 is the answer.

User Ritesh Choudhary
by
4.6k points