Suppose we're asked to solve the first order linear differnetial equation,
![\longrightarrow\rm{(dy)/(dx)+y\cdot P(x)=Q(x)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jpsia7t89pm597ejh2ldb055rbsb6x3xw7.png)
To solve this equation we have to find out a term called 'Integrating Factor' given by,
![\rm{I_f=e^(\int P(x)\ dx)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/r2odkju1st255rx0uiy2mm4gfpa4ux2cic.png)
such that the solution of the equation is,
![\displaystyle\longrightarrow\rm{y\cdot I_f=\int Q(x)\cdot I_f\ dx}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6gbjy8nvyeg1a8m27hzx5l8aypsrhdjhom.png)
Here the given differential equation is,
![\longrightarrow\rm{(dy)/(dx)-(y)/(x)=3x}](https://img.qammunity.org/2023/formulas/mathematics/high-school/x0jlej5q4hd35cjt7arvpal0iis58kwl1k.png)
![\longrightarrow\rm{(dy)/(dx)+y\left(-(1)/(x)\right)=(3x)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1nipszxpwweudsrtgptqtdlqcapy9njba8.png)
Here,
![\longrightarrow\rm{P(x)=-(1)/(x)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/tugvtoji08lnug2rs8hlqcm022pi96oaj7.png)
Integrating wrt x,
![\displaystyle\longrightarrow\rm{\int P(x)\ dx=-\int(1)/(x)\ dx}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rbtqxge8x557uz8wmhrly02e5hcoz93ip4.png)
![\displaystyle\longrightarrow\rmx](https://img.qammunity.org/2023/formulas/mathematics/high-school/yno2copjwomlyphnh8o9esybndfm09a3gi.png)
[We will consider constant of integration as zero.]
Then the integrating factor is,
![\longrightarrow\rm{I_f=e^(\int P(x)\ dx)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bdep3o1ok1a6ipw92xl3ecllqb9gt5gvcb.png)
![\longrightarrow\rmx](https://img.qammunity.org/2023/formulas/mathematics/high-school/qhqtxqe2qec0170ty8cd5m2fixu6bm9hcb.png)
Since
![\rm{e^(b\,\ln(a))=a^b,}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9um09m78vzvvj5ndeqtjxcuz22f4c02os3.png)
![\longrightarrow\rm{I_f=x^(-1)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pmm3u25jplzxoutbrghqenbp8z3sg60cd3.png)
![\longrightarrow\rm{\underline{\underline{I_f=(1)/(x)}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lvazdlryozs2mfp97hkkt40do24i93cpov.png)
Hence the integrating factor for the given differential equation is 1/x.