170,885 views
32 votes
32 votes
G(n) = -72*(1/6)^n-1 complete the recursive formula

User Gerrat
by
2.8k points

1 Answer

18 votes
18 votes

Final answer:

To complete the recursive formula for the sequence g(n) = -72*(1/6)^(n-1), we can express g(n) in terms of its previous term, g(n-1), as g(n) = g(n-1) * (1/6).

Step-by-step explanation:

The given sequence is defined by the expression g(n) = -72*(1/6)^(n-1). To complete the recursive formula, we need to express g(n) in terms of its previous term, g(n-1). Let's start by finding g(n-1): g(n-1) = -72*(1/6)^(n-2). Now, we can express g(n) in terms of g(n-1): g(n) = -72*(1/6)^(n-1) = -72*(1/6)^((n-2)+1) = -72*(1/6)^(n-2) * (1/6) = g(n-1) * (1/6).

User Cpg
by
3.2k points