Answer:
Explanation:
x+2y+z=-5
2x-y-3z=5
x+y+2z=0
The given system of equations is a 3×4 matrix:
![\left[\begin{array}{ccccc}1&2&1&|&-5\\2&-1&-3&|&5\\1&1&2&|&0\end{array}\right]](https://img.qammunity.org/2023/formulas/mathematics/high-school/af04fb0djyzv5i2pxgf6uqkjv6i09jg90d.png)
We need to find the echelon form of the rows of this matrix
Multiply line 1 by (-2) and add it to line 2:
![\left[\begin{array}{ccccc}1&2&1&|&-5\\0&-5&-5&|&15\\1&1&2&|&0\end{array}\right]](https://img.qammunity.org/2023/formulas/mathematics/high-school/8yz2rzelvjg1ais48zkir5t15763wqy8hd.png)
Multiply line 1 by (-1) and add it to line 3:
![\left[\begin{array}{ccccc}1&2&1&|&-5\\0&-5&-5&|&15\\0&-1&1&|&5\end{array}\right]](https://img.qammunity.org/2023/formulas/mathematics/high-school/cf8x8hhdkyj7ugy3ngn1j1jzekd0t9gobz.png)
Divide the line 2 by (-5) and add it to row 3:
![\left[\begin{array}{ccccc}1&2&1&|&-5\\0&-5&-5&|&15\\0&0&2&|&2\end{array}\right]](https://img.qammunity.org/2023/formulas/mathematics/high-school/qhjxdknsuc9uvf3shz80sa62rq97g4j0aj.png)
Consequently, the matrix in the form of an echelon of rows has the form:
![\left[\begin{array}{ccccc}1&2&1&-5\\0&-5&-5&15\\0&0&2&2\end{array}\right]](https://img.qammunity.org/2023/formulas/mathematics/high-school/l8kqalho0wzvnzbhimg1t575t4ugh2gg5e.png)