Answer:
![(x+1)(x+\sqrt3)(x-\sqrt3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/q81ujxcf8xrg6mhzfc0sfb0bi33sqwyxn3.png)
Explanation:
We need to factor out ,
![\longrightarrow x^3 + x^2 -3x -3 = p(x) \ \ \rm[say]\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/vyo37udf7zwehh5d9bnwmdhgvkon3mzenm.png)
Look out for factors of 3 , which could be , ±1 or ±3 . That is : 1 , -1 , 3 , -3
Substitute these factors one by one in the given cubic polynomial and look out for that value for which the expression becomes 0 .
Substitute
,
![\longrightarrow 1^3 + 1^2 -3(1) -3 \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/xk07d8f5bek00bqy7abingu69uz4v45lnd.png)
![\longrightarrow 2 -3-3 = -4 \\eq 0\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/d6gz9sbkvjxgk6rwlz0ktfmuodszgjn2pl.png)
Again substitute
, we have ;
![\longrightarrow (-1)^3+(-1)^2-3(-1)-3\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/aev0z8x03h6h7202va7r8rvhfgjlgorp6z.png)
![\longrightarrow -1 + 1 +3 - 3 = \boxed{0 } \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/fqff7bba7ezwn5bdid7auwwgboenqsqrya.png)
This implies
is a factor of the given cubic polynomial. Now on dividing the polynomial by
, we have; ( see attachment)
![\longrightarrow p(x) = (x+1)(x^2-3)\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/pvz9fczjyze4y0kul79rhfkrmbsercjhby.png)
Now we can further factorise
as ,
![\longrightarrow x^2 - 3 \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/tbe3igaoyfg1dyucmg0v2ld8hxuolmqmcc.png)
can be written as ,
![\longrightarrow x^2-(\sqrt3)^2 \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/cv2cscrsefwbkslyqy9l89neoalh9od438.png)
on using identity
, we have;
![\longrightarrow (x+\sqrt3)(x-\sqrt3) \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/usfge9i6eu1f9ceecnt7ogr0btzoytd56w.png)
So the final factorised form of the given cubic polynomial is ,
![\longrightarrow \underline{\underline{ p(x)= (x+1)(x+\sqrt3)(x-\sqrt3)}} \\](https://img.qammunity.org/2023/formulas/mathematics/high-school/nlcl9jw095oh0fi2qvkgufyxfayvplth7a.png)
and we are done!