234,502 views
37 votes
37 votes
Calculus helpppppppppppppppp

Calculus helpppppppppppppppp-example-1
User Kumsal Obuz
by
2.4k points

1 Answer

22 votes
22 votes

Answer:


\displaystyle y' = \frac{5x^2 + 3}{3(1 + x^2)^\bigg{(2)/(3)}}

General Formulas and Concepts:

Pre-Algebra

  • Equality Properties

Algebra I

  • Functions
  • Function Notation
  • Exponential Rule [Root Rewrite]:
    \displaystyle \sqrt[n]{x} = x^{(1)/(n)}

Algebra II

  • Logarithms and Natural Logs
  • Logarithmic Property [Multiplying]:
    \displaystyle log(ab) = log(a) + log(b)
  • Logarithmic Property [Exponential]:
    \displaystyle log(a^b) = b \cdot log(a)

Calculus

Derivatives

Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Logarithmic Derivative:
\displaystyle (d)/(dx) [lnu] = (u')/(u)

Implicit Differentiation

Explanation:

Step 1: Define

Identify


\displaystyle y = x\sqrt[3]{1 + x^2}

Step 2: Rewrite

  1. [Equality Property] ln both sides:
    \displaystyle lny = ln(x\sqrt[3]{1 + x^2})
  2. Logarithmic Property [Multiplying]:
    \displaystyle lny = ln(x) + ln(\sqrt[3]{1 + x^2})
  3. Exponential Rule [Root Rewrite]:
    \displaystyle lny = ln(x) + ln \bigg[ (1 + x^2)^\bigg{(1)/(3)} \bigg]
  4. Logarithmic Property [Exponential]:
    \displaystyle lny = ln(x) + (1)/(3)ln(1 + x^2)

Step 3: Differentiate

  1. ln Derivative [Implicit Differentiation]:
    \displaystyle (d)/(dx)[lny] = (d)/(dx) \bigg[ ln(x) + (1)/(3)ln(1 + x^2) \bigg]
  2. Rewrite [Derivative Property - Addition]:
    \displaystyle (d)/(dx)[lny] = (d)/(dx)[ln(x)] + (d)/(dx) \bigg[ (1)/(3)ln(1 + x^2) \bigg]
  3. Rewrite [Derivative Property - Multiplied Constant]:
    \displaystyle (d)/(dx)[lny] = (d)/(dx)[ln(x)] + (1)/(3)(d)/(dx)[ln(1 + x^2)]
  4. ln Derivative [Chain Rule]:
    \displaystyle (y')/(y) = (1)/(x) + (1)/(3) \bigg( (1)/(1 + x^2) \bigg) \cdot (d)/(dx)[(1 + x^2)]
  5. Rewrite [Derivative Property - Addition]:
    \displaystyle (y')/(y) = (1)/(x) + (1)/(3) \bigg( (1)/(1 + x^2) \bigg) \cdot \bigg( (d)/(dx)[1] + (d)/(dx)[x^2] \bigg)
  6. Basic Power Rule]:
    \displaystyle (y')/(y) = (1)/(x) + (1)/(3) \bigg( (1)/(1 + x^2) \bigg) \cdot (2x^(2 - 1))
  7. Simplify:
    \displaystyle (y')/(y) = (1)/(x) + (1)/(3) \bigg( (1)/(1 + x^2) \bigg) \cdot 2x
  8. Multiply:
    \displaystyle (y')/(y) = (1)/(x) + (2x)/(3(1 + x^2))
  9. [Multiplication Property of Equality] Isolate y':
    \displaystyle y' = y \bigg[ (1)/(x) + (2x)/(3(1 + x^2)) \bigg]
  10. Substitute in y:
    \displaystyle y' = x\sqrt[3]{1 + x^2} \bigg[ (1)/(x) + (2x)/(3(1 + x^2)) \bigg]
  11. [Brackets] Add:
    \displaystyle y' = x\sqrt[3]{1 + x^2} \bigg[ (5x^2 + 3)/(3x(1 + x^2)) \bigg]
  12. Multiply:
    \displaystyle y' = \frac{(5x^2 + 3)\sqrt[3]{1 + x^2}}{3(1 + x^2)}
  13. Simplify [Exponential Rule - Root Rewrite]:
    \displaystyle y' = \frac{5x^2 + 3}{3(1 + x^2)^\bigg{(2)/(3)}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Implicit Differentiation

Book: College Calculus 10e

User Jwal
by
3.3k points