207k views
5 votes
Find an equation of the line that goes through the points (-3,-11) and (8,55). Write your answer in the form

y=mx+b.
y =

User Scorpioniz
by
5.5k points

1 Answer

2 votes


(\stackrel{x_1}{-3}~,~\stackrel{y_1}{-11})\qquad (\stackrel{x_2}{8}~,~\stackrel{y_2}{55}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{55}-\stackrel{y1}{(-11)}}}{\underset{run} {\underset{x_2}{8}-\underset{x_1}{(-3)}}} \implies \cfrac{55 +11}{8 +3} \implies \cfrac{ 66 }{ 11 } \implies 6


\begin{array}ll \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-11)}=\stackrel{m}{ 6}(x-\stackrel{x_1}{(-3)}) \implies y +11 = 6 ( x +3) \\\\\\ y+11=6x+18\implies {\Large \begin{array}{llll} y=6x+7 \end{array}}

User Araz Abishov
by
5.2k points