Answer:
$3,894.07
Explanation:
![\boxed{\begin{minipage}{8.5 cm}\underline{Compound Interest Formula}\\\\$ A=P\left(1+(r)/(n)\right)^(nt)$\\\\where:\\\\ \phantom{ww}$\bullet$ $A =$ final amount \\ \phantom{ww}$\bullet$ $P =$ principal amount \\ \phantom{ww}$\bullet$ $r =$ interest rate (in decimal form) \\ \phantom{ww}$\bullet$ $n =$ number of times interest is applied per year \\ \phantom{ww}$\bullet$ $t =$ time (in years) \\ \end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/college/8815hjigmvu1fkv0t7t4d3pvanne9jdant.png)
Given:
- A = $5,000
- r = 5% = 0.05
- n = 365 (daily)
- t = 5 years
Substitute the given values into the formula and solve for P:
![\implies 5000=P\left(1+(0.05)/(365)\right)^(365 * 5)](https://img.qammunity.org/2023/formulas/mathematics/college/nbwxa62jhaabwue4wsupzpqcqqpymvahwd.png)
![\implies 5000=P\left(1.000136986...\right)^(1825)](https://img.qammunity.org/2023/formulas/mathematics/college/zhpen3nqsx83ge3ymurmq5hjgm1fl839i1.png)
![\implies P=(5000)/(\left(1.000136986...\right)^(1825))](https://img.qammunity.org/2023/formulas/mathematics/college/d0u8cx6qgkpw44xg31n6qdn6l252hnhn8g.png)
![\implies P=3894.070588...](https://img.qammunity.org/2023/formulas/mathematics/college/jiw87kfdb52g8mddoa0s85hbykhs0tuvqm.png)
Therefore, the amount you would need to deposit in an account now in order to have $5,000 in the account in 5 years time is $3,894.07.