Answer:
1. (f(x)-f(a))/(x-a) **A(x)=(f(x)-f(a))/(x-a) This average rate of shift attribute is designated by the letter A. *f(x) - f(a) represents the difference in the function f as the input transitions from a to x. x - a represents the change in the input of the function f.
f(5)=-2 f(9)=14 (f(5)-f(9))/(5-9)=(-2-14)/-4=4 (f(5)-f(9))/(5-9)=(-2-14)/-4=4
Over the range of x = 5 to x = 9, the average rate of change is 4.
2. g(x)=2x2+13x+1, f(x)=4x2+6x
(f/g)(x)=(4x2+6x)/(2x2+13x+1) (f/g)(x)=(4x2+6x) (f/g)(x)=(4x2+6x)
f(x): 88/85,155/116,180/151,238/190,304/233,378/280 f(x): 88/85,155/116,180/151,238/190,304/233,378/280 f(x): 88/85,155/116,180/151,238/190,304/233,378/280 f(x): 88/85
3. f(x)=x2-6x+8, g(x)=x-2, g(x)=x-2, f(x)=g (x)
x2-6x+8=x-2, x2-6x-x+8+2=0, x2-7x+10=0, x2-6x-x+8+2=0
x1,2=(7+(72-4*10))/2=(7+3)/2 x1=5, x2=2 x1=5 x2=2
Explanation: