Answer:
![\textsf{1)\quad 48\;inches}](https://img.qammunity.org/2023/formulas/mathematics/high-school/n00y1s9sjbaddcpnq6frmy1q1t2msr6zp8.png)
![\textsf{2)\quad$2\sqrt[3]{3}$\; inches}](https://img.qammunity.org/2023/formulas/mathematics/high-school/dx4mnfc4057ku97b0ca70wa81l5cihusy5.png)
Explanation:
Question 1
Define the variables:
- Let x be the length of the string.
- Let y be the rate of vibration of a string under constant tension.
The rate of vibration of a string under constant tension varies inversely with the length of the string:
![\boxed{y \propto (1)/(x) \implies y=(k)/(x)\quad\text{for a constant $k$}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lo04tacqecv3rim87qwk0f2rzaezdqjnze.png)
Given values:
- x = 24 inches
- y = 128 times per second
Substitute the given values of x and y into the formula and solve for k:
![\implies 128=(k)/(24)](https://img.qammunity.org/2023/formulas/mathematics/high-school/1plj7pgezgv1m67crafb131bm6000h4g7v.png)
![\implies k=128 \cdot 24](https://img.qammunity.org/2023/formulas/mathematics/high-school/hbhzs47ulkxvl4z9hpzvw2wp77ti8s9tja.png)
![\implies k=3072](https://img.qammunity.org/2023/formulas/mathematics/high-school/1tqpbtpfqx0b27afzy7sqkiqii6k7f2zox.png)
Therefore, the equation is:
![y=(3072)/(x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/txpqcjs0tr6d7hgh02ppsa957nc586pehg.png)
To find the length of a string that vibrates 64 times per second, substitute y = 64 into the equation and solve for x:
![\implies 64=(3072)/(x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/cx7rb67xrqx3ctrk5txigu4ljg348lelvi.png)
![\implies x=(3072)/(64)](https://img.qammunity.org/2023/formulas/mathematics/high-school/3m7vn9p3jy84a3yuta5uehg4hlj8qce785.png)
![\implies x=48](https://img.qammunity.org/2023/formulas/mathematics/high-school/opb0ovq59ppvogz02q8u891mmws6folclt.png)
Therefore, the length of a string that vibrates 64 times per second is 48 inches.
---------------------------------------------------------------------------------------------
Question 2
Define the variables:
- Let y be the horsepower (hp) that a shaft can safely transmit.
- Let v be the speed of the shaft (in rpm).
- Let d be the diameter of the shaft (in inches).
The horsepower that a shaft can safely transmit varies jointly with its speed and the cube of the diameter:
![\boxed{y \propto vd^3 \implies y=kvd^3\quad\text{for a constant $k$}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/uewzq85dpxc78hyh3yu040fn3buk8a6cst.png)
Given values:
- y = 45 hp
- v = 100 rpm
- d = 3 inches
Substitute the given values of y, v and d into the formula and solve for k:
![\implies 45=k \cdot 100 \cdot 3^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/p8384onecbty0h71bnep3s936yz7ms6izl.png)
![\implies 45=k \cdot 100 \cdot 27](https://img.qammunity.org/2023/formulas/mathematics/high-school/ssuer5k6a60m6wl5g0rw4i7nq53srpwdv4.png)
![\implies 45=2700k](https://img.qammunity.org/2023/formulas/mathematics/high-school/3ijxv9go1khtkhfxafp59m0cdef2ji5g8g.png)
![\implies k=(45)/(2700)=(1)/(60)](https://img.qammunity.org/2023/formulas/mathematics/high-school/us4ve3e9v8ao066npnl4lzs4bd7xbdxyk4.png)
Therefore, the equation is:
![y=(vd^3)/(60)](https://img.qammunity.org/2023/formulas/mathematics/high-school/obpz693qapafssapa0c5dyj3nel2oru3cp.png)
To find the diameter of the shaft in order to transmit 60 hp at 150 rpm, substitute y = 60 and v = 150 into the equation and solve for d:
![\implies 60=(150d^3)/(60)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ohx7r5zgrwkffjy1ob8qnirk71spkwolu0.png)
![\implies 3600=150d^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/b6adsqv5nqcc7gl8sxw7rvwqakrdymfb94.png)
![\implies d^3=(3600)/(150)](https://img.qammunity.org/2023/formulas/mathematics/high-school/9s4zh50bvwxk1v3ms0ht439v1y9nh87upx.png)
![\implies d^3=24](https://img.qammunity.org/2023/formulas/mathematics/high-school/n8s1p6xswjkslwc92i0uomxtgosy856oi5.png)
![\implies d=\sqrt[3]{24}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4wen9epnm1gm3szr3wv31ydrq4zji4422w.png)
![\implies d=\sqrt[3]{8 \cdot 3}](https://img.qammunity.org/2023/formulas/mathematics/high-school/sjkssc65cnuy3xf63zp4k8gqpm8k5z06i2.png)
![\implies d=\sqrt[3]{8} \sqrt[3]{3}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nuc7y8jn2xf3fhlhgreduf9q3qlkss5o49.png)
![\implies d=\sqrt[3]{2^3} \cdot \sqrt[3]{3}](https://img.qammunity.org/2023/formulas/mathematics/high-school/fuguv8j0jwesw1o96teaw7fhyzr1dejbz9.png)
![\implies d=2\sqrt[3]{3}](https://img.qammunity.org/2023/formulas/mathematics/high-school/r5rulq7pv1giniu7dyn51yu8j13ij0qctp.png)
Therefore, the diameter of a shaft that transmits 60 hp at 150 rpm is 2³√3 inches.