221k views
0 votes
In the photo below please!!!!​

In the photo below please!!!!​-example-1

1 Answer

3 votes

Answer:


\cos(\theta) + \sin(\theta)

Explanation:

Use the sine angle sum identity.


\sin(a+b)=\sin(a)\cos(b)+\cos(a)\sin(b)


\sin(45\textdegree + \theta)=\sin(45\textdegree)\cos(\theta)+\cos(45\textdegree)\sin(\theta)

Now, simplify
\sin(45\textdegree) and
\cos(45\textdegree) to
(\sqrt2)/(2):


\sin(45\textdegree + \theta)=(\sqrt2)/(2) \cdot \cos(\theta)+(\sqrt2)/(2) \cdot \sin(\theta)

Then, factor out
(\sqrt2)/(2) from each term.


\sin(45\textdegree + \theta)=(\sqrt2)/(2) \cdot ( \cos(\theta)+\sin(\theta))

Finally, identify what is in the parentheses corresponding to the blank space in the question.


\cos(\theta) + \sin(\theta)

User Daymannovaes
by
3.6k points