Answer:
(1, 1.6)
(0, 8)
Explanation:
Given exponential function:
![f(x)=8\left((1)/(5)\right)^x](https://img.qammunity.org/2023/formulas/mathematics/college/f071mm9p3o9av4bafqgid0spgi9mi83x1m.png)
Given ordered pairs:
- (-2, 80)
- (1, 1.6)
- (0, 8)
- (-1, -40)
To determine which of the given ordered pairs lie on the graph of the given exponential function, substitute each x-coordinate into the function and compare the y-coordinate.
![\begin{aligned}x=-2 \implies y&=8\left((1)/(5)\right)^(-2)\\&=8(25)\\&=200\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/rhwvfxur94w6se6u2wfq2fd0bipztkxi6p.png)
As (-2, 200) ≠ (-2, 80) the ordered pair (-2, 80) does not lie on the graph.
![\begin{aligned}x=1 \implies y&=8\left((1)/(5)\right)^(1)\\&=8\left((1)/(5)\right)\\&=1.6\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/7a3cc76wehz1w6xly6lkv6qgkcq3gt4lak.png)
As (1, 1.6) = (1, 1.6) the ordered pair (1, 1.6) does lie on the graph.
![\begin{aligned}x=0 \implies y&=8\left((1)/(5)\right)^(0)\\&=8(1)\\&=8\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/3d4jh2gax7fd7s6eh8th2wcdtwelg2be5a.png)
As (0, 8) = (0, 8) the ordered pair (0, 8) does lie on the graph.
![\begin{aligned}x=-1 \implies y&=8\left((1)/(5)\right)^(-1)\\&=8(5)\\&=40\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/r80ez5yb7gvondjb859p6n7x9725sdm786.png)
As (-1, 40) ≠ (-1, -40) the ordered pair (-1, -40) does not lie on the graph.