202k views
3 votes
13. An object of mass
30 \mathrm{~kg} is falling in air and experiences a force due to air resistance of 50 newtons.

a. Determine the net force acting on the object and
b. calculate the accelerâtion of the object.

1 Answer

4 votes

Answer:


250\; {\rm N} (downwards.)

Approximately
8.3\; {\rm m\cdot s^(-2)}

(Assuming that the gravitational field strength is
g \approx 10\; {\rm m\cdot s^(-2)}.)

Step-by-step explanation:

Note that
1\; {\rm kg \cdot m\cdot s^(-2)} = 1\; {\rm N}.

There are two forces on this object:

  • weight (downward), and
  • air resistance (upwards.)

Let
g denote the gravitational field strength. The weight of an object of mass
m will be
m\, g.

In this example, since
m = 30\; {\rm kg} and
g \approx 10\; {\rm m\cdot s^(-2)} around the surface of the earth. The weight of this object will be:


\begin{aligned}m\, g &\approx (30\; {\rm kg})\, (10\; {\rm m\cdot s^(-2)}) \\ &= 300\; {\rm kg \cdot m\cdot s^(-2)} \\ &= 300\; {\rm N}\end{aligned}.

The air resistance on this object is given to be
50\; {\rm N} (upwards.) Since the two forces are in opposite directions, the magnitude of the resultant force on the object will be the difference between their magnitudes:


\begin{aligned} &(\text{resultant force}) \\ &= (\text{weight}) - (\text{resistance}) \\ & \approx (300\; {\rm N}) - (50\; {\rm N}) \\ &= 250\; {\rm N}\end{aligned}.

(Downwards.)

Divide the resultant force on the object by the mass
m of the object to find the acceleration of the object:


\begin{aligned}& (\text{acceleration}) \\ &= \frac{(\text{resultant force})}{(\text{mass})} \\ &\approx \frac{250\; {\rm N}}{30\; {\rm kg}} \\ &= 8.3\; {\rm m \cdot s^(-2)}\end{aligned}.

User Gonfva
by
5.7k points