Answer:
B. 6 units
Explanation:
Given equations:
![y = -2x^2 + 8x](https://img.qammunity.org/2023/formulas/mathematics/high-school/5f6ccmuhk2qe8tsn63ct0yzp5rpct9b3sm.png)
![x-2.23y + 10.34 = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/zsohy4xbkjbayr1rlslctw7yb7jnsw3cf7.png)
The points at which the rod is attached to the archway are the points of intersection of the two equations.
Rearrange the second equation to make x the subject:
![\implies x=2.23y-10.34](https://img.qammunity.org/2023/formulas/mathematics/high-school/pzw3fmzzl93jkbasj1mnoshvx5z2rq47m8.png)
Substitute this into the first equation to create a quadratic:
![y = -2(2.23y-10.34)^2 + 8(2.23y-10.34)](https://img.qammunity.org/2023/formulas/mathematics/high-school/z7og80oh7jphn6pfk03zrhulmecg0ayjut.png)
![y = -2(4.9729y^2-46.1164y+106.9156) + 17.84y-82.72](https://img.qammunity.org/2023/formulas/mathematics/high-school/i9lcan7jxdg65b7o2aqe7t01zqpyrjczzj.png)
![y=-9.9458y^2+92.2328y-213.8312+17.84y-82.72](https://img.qammunity.org/2023/formulas/mathematics/high-school/hjz4pdkq2vdpbjgh4era05i9tjl4sdaten.png)
![y=-9.9458y^2+110.0728y-296.5512](https://img.qammunity.org/2023/formulas/mathematics/high-school/ayd4jpcdes53ealnc0t2i7k8cdravnvrr4.png)
![-9.9458y^2+109.0728y-296.5512=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/guk4ukm5567k4rpsw9abi5fr7odkjdt87y.png)
![\boxed{\begin{minipage}{3.6 cm}\underline{Quadratic Formula}\\\\$x=(-b \pm √(b^2-4ac))/(2a)$\\\\when $ax^2+bx+c=0$ \\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/y4o8yi6a03inhmfcrws9qy06m74fwoktuh.png)
Solve the quadratic using the quadratic formula:
![\implies y=(-(109.0728) \pm √((109.0728)^2-4(-9.9458)(-296.5512)))/(2(-9.9458))](https://img.qammunity.org/2023/formulas/mathematics/high-school/g2q1cobnspcc25mp4fkulxnzb8crg1zjhl.png)
![\implies y=(-109.0728 \pm √(99.12))/(-19.8916)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pw74a63ova0hazoiop3vpn3ehdhbu1ie7t.png)
![\implies y=(109.0728 \pm √(99.12))/(19.8916)](https://img.qammunity.org/2023/formulas/mathematics/high-school/iz8fgnljehtif6bxxj9sa4k07km9zssmgg.png)
![\implies y=5.983867702, \quad y=4.982851918](https://img.qammunity.org/2023/formulas/mathematics/high-school/fc871ym91orv5bq2xz2quwuq92v1qdh9fr.png)
As point B is at a higher level than point A, the y-value of point B is approximately 6 units.
Therefore, point B is 6 units from ground level.