Explanation:
1. First things first, the binomial tells us the zeroes.
![- (x - 2) {}^(2) = 0](https://img.qammunity.org/2023/formulas/mathematics/college/ryhzw36uypau4ku0jx4meh4qk9pjgs5gx0.png)
![(x - 2) {}^(2) = 0](https://img.qammunity.org/2023/formulas/mathematics/college/kcn2ighoo3tvojak3wjz2icn03sr6acwct.png)
![x - 2 = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/t3fzsvpeg9bcrvc4avncd4imh9qrudfdhh.png)
![x = 2](https://img.qammunity.org/2023/formulas/mathematics/high-school/h1w3uombpcqus9of954w06kunwejo2ltg4.png)
This root has a multiplicity of 2, so this root will "bounces off the x axis"
![(x + 4) = 0](https://img.qammunity.org/2023/formulas/mathematics/college/7wyhdaz87d5beub1q3i2si7w34q5p1xyo7.png)
![x = - 4](https://img.qammunity.org/2023/formulas/mathematics/high-school/vvfizh8wglohlrvngv3cklhymi0m2xcq2s.png)
Our x intercepts are
2 and -4
This root has a multiplicty of 1, so it will cross thorough the x axis.
Our leading degree is odd and we have a negative leading coefficient so
as x approaches ♾️, f(x) approaches negative ♾️
and as x approaches negative ♾️, f(x) approaches ♾️.
Our y intercept can be found by letting x=0,
so
![- (0 - 2) {}^(2) (0 + 4) = - ( - 2) {}^(2) (0 + 4) = - (4)(4) = - 16](https://img.qammunity.org/2023/formulas/mathematics/college/zc49emsv7o24uqe7hbirj7b4iuyqc5r3qa.png)
So our y intercept is -16.
For Rational Functions, if the numerator and denominator share the same factor they are considered a removable discontinuity or hole.
Set it equal to 0.
![x + 5 = 0](https://img.qammunity.org/2023/formulas/mathematics/college/6jebao4k9e5mxz5mtuvbmy85rieiv59l1x.png)
![x = - 5](https://img.qammunity.org/2023/formulas/mathematics/high-school/ecuwrrtacr31p2pve04edaryvojosc2q9w.png)
So we have a hole at x=-5.
Next, simplify the fraction.
![(x - 4)/(x - 6)](https://img.qammunity.org/2023/formulas/mathematics/college/blhxn9jdmfzsc9d0cbeeqessx0mpw5bgmc.png)
Now, plug in -5
![( - 5 - 4)/( - 5 - 6) = ( - 9)/( - 11) = (9)/(11)](https://img.qammunity.org/2023/formulas/mathematics/college/xx8ylotttggsjrrfxc6hxakmo9bg34gwtw.png)
So we have a hole at (-5,9/11).
To find y intercept, let x=0,
![(0 - 4)/(0 - 6) = (2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/872yl8fdy12lphekrt3hq2xk7u82zcje2o.png)
To find Vertical Asymptote, set denominator equal to 0
![x - 6 = 0](https://img.qammunity.org/2023/formulas/mathematics/college/pkeief9xvfg3s8ciy0tq5z3jf03d5schpf.png)
![x = 6](https://img.qammunity.org/2023/formulas/mathematics/high-school/gbsd0tjramts93t3mcwk27d5qems91r8zz.png)
Draw a vertical dotted line at x=6
To find HA, this is the only case since the numerator and denominator has the same degree.
So using the leading coefficients, divide the numerator leading coefficient/ denominator leading coefficient.
The leading coefficient for both is 1 so
![ha = (1)/(1)](https://img.qammunity.org/2023/formulas/mathematics/college/lk4v4jrwz2q3bd5q1ix768r5p3rkr4ifac.png)
So our HA is y=1.
Draw a horizon tal dotted line at y=1
We have no slope asymptote.
The graph is above.
Part 3:
(3x-1)(2x+1)>0
![3x - 1 = 0](https://img.qammunity.org/2023/formulas/mathematics/college/5tqvdzl1akuq5hn9rb0mmol8k0p2sz3qs0.png)
![3x = 1](https://img.qammunity.org/2023/formulas/mathematics/college/8br8r3ds8nid8be3npff5lc5qjravm63u9.png)
![x = (1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/7jtt7gyo82jm9wo3s7x5fq18h0b23c3x8r.png)
![2x + 1 = 0](https://img.qammunity.org/2023/formulas/mathematics/college/lqpk5c5nv6a4ht6u7dc6ditee455aszgrb.png)
![2x = - 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/bdfffwuxkmablb24pk0p81fjdes3ywjc6i.png)
![x = - (1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/j7y9s1de4x48sugfm5yrkld077h3014oee.png)
We have three possible regions, when x is positive
- When x is less than -1/2
- When x lies between -1/2 and 1/3
- When x is greater than 1/3
Pick a random number less than -1/2 and plug it in the inequality to see if it true.
Let use -1
![(3( - 1) - 1)(2( - 1) + 1) = ( - 4)( - 1) = 4](https://img.qammunity.org/2023/formulas/mathematics/college/hsv55hrfjcjmxi2qaviwopad57s944w38m.png)
Since 4>0, Whenever x is less than -1/2, the function is positive (greater than zero)
Let's try the next region.
Let use 0
![(3(0) - 1)(2(0) + 1) = ( - 1)(1) = - 1](https://img.qammunity.org/2023/formulas/mathematics/college/i8okv3hlq4hlxlpuf7pu23yxt9xy2t8szv.png)
So this solution won't work
Let try the next region, let use 1.
![(3(1) - 1)(2(1) + 1) = (2)(3) = 6](https://img.qammunity.org/2023/formulas/mathematics/college/aco8rbyck45n73tstuiuduc06wxvbm28z5.png)
Since 6>0, Whenever x is greater than 1/3, the function is positive(greater than zero).
Our answer is
(-oo,-1/2) U (1/3,oo).
Part 4:
We know x cannot be -2 because
![x + 2 = 0](https://img.qammunity.org/2023/formulas/mathematics/college/5bslj2a23tyzz195glzahls95fzltw6ght.png)
![x = - 2](https://img.qammunity.org/2023/formulas/mathematics/high-school/pbzobfeii553socaidjgfpxd9y8wktxu0z.png)
So -2 can not be in our answer.
![(x - 1)/(x + 2) \leqslant 2](https://img.qammunity.org/2023/formulas/mathematics/college/tlriksaj67ntcdodql4tlh763zrmpj3n8b.png)
![x - 1 \leqslant 2(x + 2)](https://img.qammunity.org/2023/formulas/mathematics/college/3jpmg70nuv4wfaw9zzkjpq9vsdj9751zas.png)
![x - 1 \leqslant 2x + 4](https://img.qammunity.org/2023/formulas/mathematics/college/pcfu88adwes6ql2zffc4sd6ehnvm55ut9t.png)
![- 5 \leqslant x](https://img.qammunity.org/2023/formulas/mathematics/college/esuqf8s5mumv8ssm6pytlp7an5x4mhcjq7.png)
So
![x \geqslant - 5](https://img.qammunity.org/2023/formulas/mathematics/college/8lqwjdjri8ull7b1z2rx2tqzf0zucm1beg.png)
However x can not be -2. so we say
[-5,-2) U (-2,oo)