171,033 views
31 votes
31 votes
Light of wavelength 656 nm and 410 nm emitted from a hot gas of hydrogen atoms strikes a grating with 5300 lines per centimeter. a) Determine the angular deflection of both wavelengths in the 1st and 2nd order.

User Bizimunda
by
2.4k points

1 Answer

19 votes
19 votes

Answer:


20.32^(\circ) and
44.08^(\circ)


12.56^(\circ) and
25.77^(\circ)

Step-by-step explanation:


\lambda = Wavelength


\theta = Angle

m = Order

Distance between grating is given by


d=(1)/(5300)\\\Rightarrow d=0.0001886\ \text{cm}


\lambda=656\ \text{nm}

We have the relation


d\sin\theta=m\lambda\\\Rightarrow \theta=\sin^(-1)(m\lambda)/(d)

m = 1


\theta=\sin^(-1)(1* 656* 10^(-9))/(0.0001886* 10^(-2))\\\Rightarrow \theta=20.35^(\circ)

m = 2


\theta=\sin^(-1)(2* 656* 10^(-9))/(0.0001886* 10^(-2))\\\Rightarrow \theta=44.08^(\circ)

The first and second order angular deflection is
20.32^(\circ) and
44.08^(\circ)


\lambda=410\ \text{nm}

m = 1


\theta=\sin^(-1)(1* 410* 10^(-9))/(0.0001886* 10^(-2))\\\Rightarrow \theta=12.56^(\circ)

m = 2


\theta=\sin^(-1)(2* 410* 10^(-9))/(0.0001886* 10^(-2))\\\Rightarrow \theta=25.77^(\circ)

The first and second order angular deflection is
12.56^(\circ) and
25.77^(\circ).

User Jjchiw
by
2.5k points