105,003 views
4 votes
4 votes
Please help me solve this and also please show me the work :)

Please help me solve this and also please show me the work :)-example-1
User Josetapadas
by
2.6k points

1 Answer

28 votes
28 votes

Given:

The figure of a right triangle.

To find:

All the six trigonometric ratios for the angle θ.

Solution:

Using the Pythagoras theorem, we get


Hypotenuse^2=Perpendicular^2+Base^2


Hypotenuse^2=(9)^2+(12)^2


Hypotenuse^2=81+144


Hypotenuse^2=225

Taking square root on both sides, we get


Hypotenuse=15

Now, the six trigonometric ratios for the angle θ are:


\sin\theta=(Perpendicular)/(Hypotenuse)


\sin\theta=(12)/(15)


\sin\theta=(4)/(5)


\cos\theta=(Base)/(Hypotenuse)


\cos\theta=(9)/(15)


\cos\theta=(3)/(5)


\tan\theta=(Perpendicular)/(base)


\tan\theta=(12)/(9)


\tan\theta=(4)/(3)


\csc\theta=(1)/(\sin \theta)


\csc\theta=(1)/((4)/(5))


\csc\theta=(5)/(4)


\sec\theta=(1)/(\cos \theta)


\sec\theta=(1)/((3)/(5))


\sec\theta=(5)/(3)


\cot\theta=(1)/(\tan \theta)


\cot\theta=(1)/((4)/(3))


\cot\theta=(3)/(4)

Therefore, the six trigonometric ratios are
\sin\theta=(4)/(5),\cos\theta=(3)/(5),\tan\theta=(4)/(3),\csc\theta=(5)/(4),\sec\theta=(5)/(3),\cot\theta=(3)/(4).

User Erekalper
by
2.5k points