Answer:
![(x,y)=\left(\; \boxed{-3,4} \; \right)\quad \textsf{(smaller $x$-value)}](https://img.qammunity.org/2023/formulas/mathematics/college/aqjpfhbgh1hreixlsv3s3ng22djwt7y5sj.png)
![(x,y)=\left(\; \boxed{5,0} \; \right)\quad \textsf{(larger $x$-value)}](https://img.qammunity.org/2023/formulas/mathematics/college/cje2jr4w9ogepl7tfdxjap34h25idwrkzb.png)
Explanation:
Given system of equations:
![\begin{cases}\;x+2y=5\\x^2+y^2=25\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/2lm5tzn2gj9v0rxnuwghbsl7yn8oh9oo6e.png)
To solve by the method of substitution, rearrange the first equation to make x the subject:
![\implies x=5-2y](https://img.qammunity.org/2023/formulas/mathematics/college/34rgog4mfg9pa8cjgct3q2v6mozax5xz83.png)
Substitute the found expression for x into the second equation and rearrange so that the equation equals zero:
![\begin{aligned}x=5-2y \implies (5-2y)^2+y^2&=25\\25-20y+4y^2+y^2&=25\\5y^2-20y+25&=25\\5y^2-20y&=0\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/s590tp6ll1oz0rmypq7xjkh502zgrxqbwc.png)
Factor the equation:
![\begin{aligned}5y^2-20y&=0\\5y(y-4)&=0\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/9hmr3vjw7b8gm5fubve9nmjckm6is50u5x.png)
Apply the zero-product property and solve for y:
![5y=0 \implies y=0](https://img.qammunity.org/2023/formulas/mathematics/college/lihvd9u41uxufe4sgx25cemcewx4b41ay9.png)
![y-4=0 \implies y=4](https://img.qammunity.org/2023/formulas/mathematics/college/na6k0l6nbdqvriwta02giwoi4a73u50g6b.png)
Substitute the found values of y into the first equation and solve for x:
![\begin{aligned}y=0 \implies x+2(0)&=5\\x&=5\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/3h6l3fc32a8tacff9vpw8k1wpbyto1wwmi.png)
![\begin{aligned}y=4 \implies x+2(4)&=5\\x+8&=5\\x&=-3\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/765hhgt6wbr8qmoxqf2zb0fuerpx5le09s.png)
Therefore, the solutions are:
![(x,y)=\left(\; \boxed{-3,4} \; \right)\quad \textsf{(smaller $x$-value)}](https://img.qammunity.org/2023/formulas/mathematics/college/aqjpfhbgh1hreixlsv3s3ng22djwt7y5sj.png)
![(x,y)=\left(\; \boxed{5,0} \; \right)\quad \textsf{(larger $x$-value)}](https://img.qammunity.org/2023/formulas/mathematics/college/cje2jr4w9ogepl7tfdxjap34h25idwrkzb.png)