37.6k views
4 votes
The area of a rectangular garden is 224 square meters. The width is 6 meters longer than one-half of the length. Find

the length and the width of the garden. Use the formula, area = length • width.
Pls help

1 Answer

3 votes


\textit{area of a rectangle}\\\\ A=Lw ~~ \begin{cases} L=length\\ w=width\\[-0.5em] \hrulefill\\ A=224\\ w=\stackrel{\textit{half-length plus 6}}{(L)/(2)+6~\hfill } \end{cases}\implies 224=L\left( \cfrac{L}{2}+6 \right)\implies 224=\cfrac{L^2}{2}+6L


\stackrel{\textit{multiplying both sides by }\stackrel{LCD}{2}}{2(224)=2\left( \cfrac{L^2}{2}+6L \right)}\implies 448=L^2+12L \\\\\\ 0=L^2+12L-448\implies 0=(L-16)(L+28)\implies \boxed{L= \begin{cases} -28\\\\ 16 ~~ \textit{\LARGE \checkmark} \end{cases}} \\\\\\ \stackrel{\textit{since we know that}}{w=\cfrac{L}{2}+6}\implies w=\cfrac{16}{2}+6\implies \boxed{w=14}

now, let's notice, "L" has two valid values but for this case "L" cannot be negative.

User Satish Thorat
by
3.6k points