For us to easily determine the volume of the figure, let's cut it into two pieces.
Dimension of Cone:
Radius = 9 mm
Height = 24 mm
Dimension of Cylinder:
Radius = 9 mm
Height = 18 mm
For the total volume of the figure, we will be using the following formula:
![\text{ Total volume = Volume of Cone + Volume of Cylinder}](https://img.qammunity.org/2023/formulas/mathematics/college/ao1e6sqajwpmyfvq21xfmf08bcgsovoj0p.png)
![\text{ Total volume = }(1)/(3)\pi r^2h\text{ + }\pi r^2h](https://img.qammunity.org/2023/formulas/mathematics/college/ibjomzoi14kdr6yjn513wtyo8w1pfet8rl.png)
We get,
![\text{ Total volume = }(1)/(3)\pi(9)^2(24)\text{ + }\pi(9)^2(24)](https://img.qammunity.org/2023/formulas/mathematics/college/wogetd61avfkc30h5pdz24pnevkron3p75.png)
![\text{ = (81)(8)}\pi\text{ + (81)(24)}\pi](https://img.qammunity.org/2023/formulas/mathematics/college/wrizuw7fxygjuiaiytaf6r4kf91znnfkci.png)
![\text{ = }648\pi\text{ + }1,944\pi](https://img.qammunity.org/2023/formulas/mathematics/college/bv8b7fcz1h0l1zhkjg4z4uj2lpmr3xo0rp.png)
![\text{ Total volume = }2,592\pi mm^3](https://img.qammunity.org/2023/formulas/mathematics/college/rox32z8zcm3yjpk6i19hg8n1zytgiwe6ff.png)
Therefore, the answer is Choice D : 2,592 mm³