Answer::
![(x^(-7))/(x^(-3))](https://img.qammunity.org/2023/formulas/mathematics/college/xokhzq4kc0bdqhe7ydsn8p3jigdg6ojer2.png)
Explanation:
Given the expression:
![x^(-4)](https://img.qammunity.org/2023/formulas/mathematics/college/wttj17n2ndg8vyplargr9a71v7bv8cglre.png)
We want to find an expression that simplifies to the given expression.
Consider the expression below:
![(x^(-7))/(x^(-3))](https://img.qammunity.org/2023/formulas/mathematics/college/xokhzq4kc0bdqhe7ydsn8p3jigdg6ojer2.png)
Applying the division law of indices:
![(x^a)/(x^b)=x^(a-b)](https://img.qammunity.org/2023/formulas/mathematics/high-school/i6wi5qkmc6t0n7ajbz9c6unz8m4r2suoof.png)
Therefore:
![(x^(-7))/(x^(-3))=x^(-7-(-3))=x^(-7+3)=x^(-4)](https://img.qammunity.org/2023/formulas/mathematics/college/k0zqhdb8bcod3wvfpbaf9s4s4tb3zna3c5.png)
An expression that simplifies to the given expression is:
![(x^(-7))/(x^(-3))](https://img.qammunity.org/2023/formulas/mathematics/college/xokhzq4kc0bdqhe7ydsn8p3jigdg6ojer2.png)