Given that y and x vary directly, we have to use the following expression.
![y=kx](https://img.qammunity.org/2023/formulas/mathematics/college/zfnjlk9kn7jg7cyy0nlnepmsiaxj3b2oge.png)
Where k is the constant of proportionality between the variable.
Let's replace y = 75 and x = 1/5 to find k.
![\begin{gathered} 75=k\cdot(1)/(2) \\ k=150 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cd2mcz3zbuawdtmk4l4df3qvb91lkv72dp.png)
Then, we use k and x = 2 1/4 to find y.
![\begin{gathered} y=kx \\ y=150\cdot2(1)/(4)=150\cdot(9)/(4) \\ y=337(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6b96l076j2m2rnfjupkb1eo3zrudv0kh7n.png)
Hence, the right answer is G.