ANSWER:
0.839 milliTeslas
Explanation:
Given:
Current (I) = 51.471 A
Distance (d) = 1.227 cm = 0.01227 m
Current solenoid (Is) = 16.358 A
Distance solenoid (ds) =65.271 cm = 0.65271 m
A sketch of the situation:
We calculate the magnetic field for each case:
![\begin{gathered} B_w=(\mu_0\cdot I)/(2\pi d)=(4\pi\cdot10^(-7)\cdot51.471)/(2\pi\cdot0.01227)=0.00083897\text{ T} \\ \\ B_s=(\mu_0\cdot I_s)/(2\pi\cdot d_s)=(4\pi\cdot10^(-7)\cdot16.358)/(2\pi\cdot0.65271)=0.00000501\text{ T} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/2s9chtz6fp2zaz622bzdiprkq6v6uxm8gs.png)
Therefore, the resulting field due to the wire and the solenoid would be:
![\begin{gathered} B=√((B_w)^2+(B_s)^2) \\ \\ \text{ We replacing:} \\ \\ B=√((0.00083897)^2+(0.00000501)^2) \\ \\ B\cong0.000839\text{ T}=0.839\text{ mT} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/all75g7hl3seemj50l6aqeqb5ycyj4e2st.png)
The correct answer is 0.839 milliTeslas