The given function is:
![f(x)=-6x^5+4x^3](https://img.qammunity.org/2023/formulas/mathematics/college/jhxb1gppiuv8e3akwngxycnyowjami0nzc.png)
Even functions are unchanged when reflected over the y-axis, so:
![f(-x)=f(x)](https://img.qammunity.org/2023/formulas/mathematics/college/w41pzirb52cxyuvfsnau7iunsq4kgxh9xz.png)
Odd functions are unchanged when rotated 180° about the origin, so:
![f(-x)=-f(x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/2e7atz772vwog13fsb2sz63eyu41ii9qrs.png)
Now, replace -x as the argument of the function and let's observe the result:
![\begin{gathered} f(-x)=-6(-x)^5+4(-x)^3 \\ f(-x)=-6*-x^5+4*-x^3 \\ f(-x)=6x^5-4x^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3g4cl5dh4qorqftwkf2nzu4252hpuccprd.png)
As can be observed, f(-x) is not equal to f(x), then this is not an even function.
Now, let's evaluate -f(x):
![\begin{gathered} -f(x)=-(-6x^5+4x^3) \\ -f(x)=-(-6x^5)-(4x^3) \\ -f(x)=6x^5-4x^3 \\ THEN \\ f(-x)=-f(x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wtq6hl7k7pkn08xciw3dxmo1qh2tygrt08.png)
This function is odd.