SOLUTION
From the question
![\begin{gathered} z\propto\sqrt[]{x}\text{ and } \\ z\propto(1)/(y) \\ \text{combining we have } \\ z\propto\frac{\sqrt[]{x}}{y} \\ \propto\text{ is a proportionality constant } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gh1x81c3aaluypso1p3txl1xr6erqxlc85.png)
Removing the proportionality sign and introducing a constant, we have
![\begin{gathered} z=k*\frac{\sqrt[]{x}}{y} \\ z=\frac{k\sqrt[]{x}}{y} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3res179dodschpmyjgwe50lhuk1rjivf63.png)
Making k the subject, we have
![\begin{gathered} z=\frac{k\sqrt[]{x}}{y} \\ k\sqrt[]{x}=yz \\ k=\frac{yz}{\sqrt[]{x}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lxikxfxixl5iqspusfbnkqb4ptg1e9ni5l.png)
Substituting the initial values of z, x, and y, we have
![\begin{gathered} k=\frac{yz}{\sqrt[]{x}} \\ k=\frac{6*147}{\sqrt[]{16}} \\ k=(882)/(4) \\ k=220.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/htbahffyb7luunphdiobj0azrjui68bofp.png)
The relationship becomes
![z=\frac{220.5\sqrt[]{x}}{y}](https://img.qammunity.org/2023/formulas/mathematics/college/yc4br0uenv0wn4xfl4svrg0bk80mfwm47h.png)
Substituting the second values of x and y into the equation for the relationship, we have
![\begin{gathered} z=\frac{220.5\sqrt[]{x}}{y} \\ z=\frac{220.5\sqrt[]{25}}{4} \\ z=(220.5*5)/(4) \\ z=(1,102.5)/(4) \\ z=275.625 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/36vjzjkiezmkg4sgxojo2c3aomop9214et.png)
Hence the answer is 275.63 to the nearest hundredth