51.7k views
3 votes
Express the following as an algebraic function of x.sin(sin-'(x) + cosos-'(x))

Express the following as an algebraic function of x.sin(sin-'(x) + cosos-'(x))-example-1
User Jim Grant
by
5.3k points

1 Answer

0 votes

Answer:


2x^2-1

Step-by-step explanation:

Given the below function;


\sin (\sin ^(-1)(x)+\cos ^(-1)(x))

Let;


\begin{gathered} \sin ^(-1)\mleft(x\mright)=a \\ \cos ^(-1)\mleft(x\mright)=b \end{gathered}

So we'll have;


\begin{gathered} \sin a=\cos b=x \\ \therefore\cos a=\sin b=\pm\sqrt[]{1-x^2} \end{gathered}

We can now rewrite the given expression as;


\begin{gathered} \sin (a+b)=\sin a\cos b+\cos a\sin b \\ =x\cdot x+(\pm\sqrt[]{1-x^2})\cdot(\pm\sqrt[]{1-x^2}) \\ =x^2\pm(1-x^2) \\ So\text{ we'll have;} \\ \Rightarrow x^2+(1-x^2) \\ x^2+1-x^2=1 \\ Or \\ \Rightarrow x^2-(1-x^2) \\ x^2-1+x^2=2x^2-1 \end{gathered}

We can see from the above that the algebraic function of x is 2x^2 - 1

User Delapouite
by
5.0k points