A quadratic equation can be written in the vertex form to be:
![y=a(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/college/97p0xsjs0cwme4ddvwkim2cbbqprhnlhsv.png)
where (h, k) is the vertex.
The question gives the following parameters:
![\begin{gathered} (h,k)=(1,0) \\ (x,y)=(0,1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/unisru1yvnyw6hl6auy6qlmxhqjj2jh74k.png)
We can use these values to solve for a:
![\begin{gathered} 1=a(0-1)^2+0 \\ a=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uuasznje7m6k3ch84p7t4qyv0bc3c9hj0n.png)
Therefore, the vertex form of the quadratic equation will be:
![y=(x-1)^2](https://img.qammunity.org/2023/formulas/mathematics/college/6no6p6dt3kzkcb2vyi2vekueke4di0fxiv.png)
Expanding, we have the general form of the quadratic equation to be:
![f(x)=x^2-2x+1](https://img.qammunity.org/2023/formulas/mathematics/college/iw9vynx6dv9xu33w8qxn0cyyndoxzpkplh.png)