SOLUTION
Step 1: Let us draw a pictorial view of the information given:
The height of the antenna AB will be:
![AB=OB-OA](https://img.qammunity.org/2023/formulas/mathematics/college/smfjsw8ceugkpyb4suq16eztwag8n5zlsz.png)
Let us find OA from triangle OAS
![\begin{gathered} \tan 34=(OA)/(19) \\ OA=19*\tan 34 \\ OA=12.816m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iyfjb3ikm7uhhuj2a4ped8p58dvxp6sd72.png)
Now, we will find OB from triangle OBS
![\begin{gathered} \tan 41=(OB)/(19) \\ OB=19*\tan 41 \\ OB=16.516m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qh4jj4s8wmkzbabku0rjgzntpli9uuarz1.png)
Now, let us find length AB, which is the length of the antenna:
![\begin{gathered} AB=OB-OA \\ AB=16.516m-12.816m \\ AB=3.7m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9ae0a0jitdxgk6hepgn7to607l1l1189pk.png)
The height of the antenna is 3.7 meters.