The given problem can be exemplified in the following diagram:
In the diagram we have the following forces:
![\begin{gathered} F=\text{ pushing force} \\ F_x=\text{ x-component of the force} \\ F_y=\text{ y-component of the force} \\ N=\text{ normal force} \\ F_f=\text{ friction force} \\ W=\text{ weight} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/4ik9g54luw23z6tx4jtqrcluxdzym2qgm0.png)
Now we will determine the value of the acceleration of the box. To do that we will add the forces in the horizontal direction:
![\Sigma F_h=F_x-F_f](https://img.qammunity.org/2023/formulas/physics/college/qby4rmamuppp6e37x6ua2dc0z5lybej3lo.png)
According to Newton's second law we have that the sum of forces must be equal to the product of the mass and the acceleration:
![F_x-F_f=ma](https://img.qammunity.org/2023/formulas/physics/college/68ijvistbztfhjjmq6insbn2mbvot6eqfz.png)
To determine the value of the friction force we use the following relationship:
![F_f=\mu N](https://img.qammunity.org/2023/formulas/physics/college/5hhd66xtdpmpovx25tj2qp8l49i7ign07y.png)
To determine the value of the normal force we add the forces in the vertical direction:
![\Sigma F_v=N-F_y-W](https://img.qammunity.org/2023/formulas/physics/college/2oyxtwblq5zpbbeqbesz3egctxhs533jo2.png)
Since there is no movement in the vertical direction we have:
![N-F_y-W=0](https://img.qammunity.org/2023/formulas/physics/college/dk6prdz0drdhsyf9a2nchqd3wy1dhr6bzf.png)
Now we solve for the normal force:
![N=F_y+W](https://img.qammunity.org/2023/formulas/physics/college/hsyzvkvd8k0sej5eqmu8oqrjyemrgol629.png)
To determine the vertical component of the force we use the right triangle shown in the diagram. We use the function sine and we get:
![\sin 35.7=(F_y)/(F)](https://img.qammunity.org/2023/formulas/physics/college/au4p1kv4ldyevcm44n1b4zua22mp25qawr.png)
Now we multiply both sides by "F":
![F\sin 35.7=F_y](https://img.qammunity.org/2023/formulas/physics/college/udroqcqyyd4yhveg57bx1ukzte3ledj732.png)
Now we substitute this value in the formula for the normal force:
![N=F\sin 35.7+W](https://img.qammunity.org/2023/formulas/physics/college/l9i4uoae0206ohejdc2h0485egnyrz35e4.png)
Now we substitute this value in the formula for the friction force:
![F_f=\mu(F\sin 35.7+W)](https://img.qammunity.org/2023/formulas/physics/college/7xatyst6qaj7sgnfwaau3mogxrqkuwhb6x.png)
Now we substitute this value in the formula for the horizontal forces:
![F_x-\mu(F\sin 35.7+W)=ma](https://img.qammunity.org/2023/formulas/physics/college/nlz97okqagrxxoty4qr3k3kkexzkoa4vq0.png)
Now, to determine the horizontal component of the force we use the function cosine:
![\cos 35.7=(F_x)/(F)](https://img.qammunity.org/2023/formulas/physics/college/ktnq76xrhuiteubapynjnbdgm89nz8g3x3.png)
Now we multiply both sides by "F":
![F\cos 35.7=F_x](https://img.qammunity.org/2023/formulas/physics/college/k6ua83my4vkxszf0ew45y7gru07z3cbs7n.png)
Now we substitute in the sum of horizontal forces:
![F\cos 35.7-\mu(F\sin 35.7+W)=ma](https://img.qammunity.org/2023/formulas/physics/college/p3iueyw5lvieibbwq78jt5nacxwc7boloj.png)
Now we solve for "a" by dividing both sides by "m":
![(F\cos 35.7-\mu(F\sin 35.7+W))/(m)=a](https://img.qammunity.org/2023/formulas/physics/college/z4pei33wr4mru45vskj107gckewa06iwha.png)
To determine the mass we use the formula for the weight:
![W=mg](https://img.qammunity.org/2023/formulas/physics/college/mwp20nloxyakj67s56rj7ugdcwo94t9z7k.png)
Where:
![g=\text{ acceleration of gravity}](https://img.qammunity.org/2023/formulas/physics/college/3o8mpmzt04qeh5itoh89q305zrzo88j4jp.png)
Now we divide both sides by "g";
![(W)/(g)=m](https://img.qammunity.org/2023/formulas/physics/college/yee2ai3tk0u5ythdcd2b2kw4oc3ygg6be7.png)
Now we substitute the values:
![((401N)\cos 35.7-(0.587)(401N\sin 35.7+245N))/((245N)/(9.8(m)/(s^2)))=a](https://img.qammunity.org/2023/formulas/physics/college/mcgw5l0fx7z12wx7d5mco6sse10j2ax84c.png)
Solving the operations we get:
![1.779(m)/(s^2)=a](https://img.qammunity.org/2023/formulas/physics/college/gwlrfsthyyrn0m4se2bcfauqfycuhipa6t.png)
Now, we will determine the final velocity of the movement. We will use the following equation of motion:
![2ad=v^2_f-v^2_0](https://img.qammunity.org/2023/formulas/physics/college/ky4yytcbpvew8dxvwsd9t2ju21iijwnqqw.png)
Since the box starts from rest this means that the initial velocity is zero:
![2ad=v^2_f](https://img.qammunity.org/2023/formulas/physics/college/ecp76yzcnagdrjimqflsu73gsefqhjoxtc.png)
Now we take the square root to both sides:
![\sqrt[]{2ad}=v_f](https://img.qammunity.org/2023/formulas/physics/college/p0svh5lta7gkpjei5wk7f50femsehroo98.png)
Now we substitute the values:
![\sqrt[]{2(1.779(m)/(s^2))(3.37m)}=v_f](https://img.qammunity.org/2023/formulas/physics/college/n5pi9relnha52iqry5wj1if84boct327hd.png)
Solving the operations:
![3.46(m)/(s)=v_f](https://img.qammunity.org/2023/formulas/physics/college/qktvd3lwy9r3017c469zz0x06oygltg69o.png)
Now we use the following equation of motion to determine the time:
![v_f=v_0+at](https://img.qammunity.org/2023/formulas/physics/college/qgre38q8sgm0h17jd2cw9z9w3fnmh5ftbi.png)
Since the initial velocity is zero:
![v_f=at](https://img.qammunity.org/2023/formulas/physics/high-school/5hgpmbosobc7jp3w7fy5kbz4sxaz9n67dv.png)
Now we divide by the acceleration:
![(v_f)/(a)=t](https://img.qammunity.org/2023/formulas/physics/high-school/kxb9zpe5zcmcq5n9v5fvcq3ylv8orkvszs.png)
Substituting the values:
![(3.46(m)/(s))/(1.779(m)/(s^2))=t](https://img.qammunity.org/2023/formulas/physics/college/ndx7ffl428wlw3sfnaq62ntn9phmgegiid.png)
Solving the operations:
![1.94s=t](https://img.qammunity.org/2023/formulas/physics/college/i64q74v3p98vwepij6utafnhv857allzt7.png)
Therefore, it takes the box 1.94 seconds to move.