To write the equation of a parabola, we are given the following information;
![\begin{gathered} \text{Focus}=(3,6) \\ \text{Directrix;} \\ y=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q9nvahji4d3u1tytwy3ylruipbr2lbhtos.png)
We shall begin by taking any point on the parabola which would be point;
![(x_1,y_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/x550ag71r3nlvmk4as4e3r7sboim1mls0a.png)
The distance between the focus and this random point can be calculated as follows;
![d=\sqrt[]{(x_1-3)^2+(y_1-6)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/y1tiuko09g5qpp9soywvacg4u41mo7t1hi.png)
Similarly, the distance between the directrix and this random point is;
![|y_1-8|](https://img.qammunity.org/2023/formulas/mathematics/college/t4kqvgl25fk630h747iw2sxujqy1gddf1d.png)
Note that the directrix is given as
![\begin{gathered} y=8 \\ \text{Therefore;} \\ The\text{ two y-coordinates would be;} \\ y_1\text{ and} \\ y=8 \\ \text{The distance therefore is, } \\ y_1-8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ljmjaby51ga7ef8jzmfb7c48ja6v0m47dw.png)
This is expressed in absolute value because the distance cannot be a negative.
We now equate both distances and we can begin to simplify;
![\begin{gathered} \sqrt[]{(x_1-3)^2+(y_1-6)^2}=|y_1-8| \\ \text{Square both sides of the equation to eliminate the radical;} \\ (x_1-3)^2+(y_1-6)^2=(y_1-8)^2 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n61g5zw2a53k9qzthm3l4vyl400jtqjzd6.png)
We can now simplify all parenthesis;
![x^2_1-6x_1+9+y^2_1-12y_1+36=y^2_1-16y_1+64](https://img.qammunity.org/2023/formulas/mathematics/college/frg2y3ihl73z34nzzpbhibk119pr1dtl0m.png)
We now move all terms to one side and we now have;
![\begin{gathered} x^2_1-6x_1+9-64+y^2_1-y^2_1-12y_1+16y_1=0 \\ x^2_1-6x_1-55+4y_1=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5akombm0f11e3sfuxsan20nb9gzuos8hup.png)
Next step, we make y the subject of the formula;
![\begin{gathered} 4y_1=-x^2_1+6x_1+55 \\ \text{Divide all through by 4;} \\ y_1=-(1)/(4)x^2_1+(3)/(2)x_1+(55)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yoecbjzwx2hmu8ih4n5utzqdyo07zuj95s.png)
We can now re-write for (x, y) as follows;
ANSWER:
![y=-(x^2)/(4)+(3x)/(2)+(55)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/q3b80a7l0dp5z8j8jdq1gnncifdcnqrkqm.png)