206k views
3 votes
QuestionUse trigonometric identities, algebraic methods, and inverse trigonometric functions, as necessary, to solve the following trigonometric equation on the interval [0, 22).Round your answer to four decimal places, if necessary. If there is no solution, indicate "No Solution."12sin?(x) - 20sin(x) = -8

QuestionUse trigonometric identities, algebraic methods, and inverse trigonometric-example-1
User Ase
by
7.5k points

1 Answer

1 vote

x=(1)/(2)\pi rads,\text{ 0.2323}\pi rads

STEP - BY - STEP EXPLANATION

What to do?

Solve the given trigonometric equation.

Given:


12\sin ^2x-20\sin x=-8

To solve the given problem, we will follow the steps below:

Step 1

Let y=sinx

Step 2

Replace sinx by y.


12y^2-20y=-8

Step 2

Re-arrange the above into the form:


ax^2+bx+c=0_{}

That is;


12y^2-20y+8=0

a=12 b=-20 and c=8

Step 3

Use the quadratic formula below to solve.


y=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}
y=\frac{20\pm\sqrt[]{(-20)^2-4(12)(8)}}{2(12)}
=\frac{20\pm\sqrt[]{400-384}}{24}
\begin{gathered} =\frac{20\pm\sqrt[]{16}}{24} \\ \\ =(20\pm4)/(24) \end{gathered}

Either


\begin{gathered} y=(20+4)/(24)=(24)/(24)=1 \\ \\ or \\ \\ y=(20-4)/(20)=(16)/(24)=(2)/(3) \end{gathered}

Step 4

Substitute the value of y in;

y=sinx

If y = 1

Then,


\sin x=1
x=\sin ^(-1)(1)
x=90\degree
\begin{gathered} x=90*(\pi)/(180) \\ \\ =(\pi)/(2)\text{rads} \end{gathered}

Step 5

Substitute y=2/3 in y=sinx


\sin x=(2)/(3)
x=\sin ^(-1)((2)/(3))
x=41.8103148958\degree

Change to radians


x=41.8810348958*(\pi)/(180)
=0.2323\pi rads

Therefore,


x=(1)/(2)\pi rads,0.2323\pi rads

User Alejandrobog
by
7.8k points