Answer:
5√6 mi
Step-by-step explanation:
In the given figure, triangles DAC and EBC are similar.
The ratio of corresponding sides are:
![(DA)/(EB)=(AC)/(BC)=(DC)/(EC)](https://img.qammunity.org/2023/formulas/mathematics/college/avauagg69hbk6pqzo385di04k9vadj2gvo.png)
Substitute the given values:
![\begin{gathered} \frac{4\sqrt[]{138}}{\sqrt[]{138}}=\frac{BC+6\sqrt[]{3}}{BC} \\ 4=\frac{BC+6\sqrt[]{3}}{BC} \\ 4BC=BC+6\sqrt[]{3} \\ 4BC-BC=6\sqrt[]{3} \\ 3BC=6\sqrt[]{3} \\ BC=\frac{6\sqrt[]{3}}{3} \\ BC=2\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tymb9a3lq3h5tcpt83gymn3pca9wdjvxpw.png)
Since we already have BC and EB, we use the Pythagoras theorem:
![\begin{gathered} EC^2=EB^2+BC^2 \\ EC^2=(\sqrt[]{138})^2+(2\sqrt[]{3})^2 \\ EC^2=138+12 \\ EC^2=150 \\ EC^{}=√(150) \\ EC=5√(6)\text{ mi} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3rmr11y8z5zeeuy23f9htmkp1yngz3s2m0.png)
The exact length of EC is 5√6 mi.