We know that:

Let's take a closer look at alpha. We know that:
![\begin{gathered} \tan ^2(\alpha)=\sec ^2(\alpha)-1 \\ \rightarrow\tan ^2(\alpha)=(1)/(\cos^2(\alpha))-1 \\ \\ \rightarrow\tan ^2(\alpha)+1=(1)/(\cos^2(\alpha)) \\ \\ \rightarrow\cos ^2(\alpha)=(1)/(\tan^2(\alpha)+1) \\ \\ \rightarrow\cos ^{}(\alpha)=\pm\text{ }\sqrt[]{(1)/(\tan^2(\alpha)+1)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xomsc9fv4qkeuqdxdgrimreqpglb785t57.png)
We also know that alpha is in quadrant II, where cosine is negative. This way,
![\begin{gathered} \cos ^{}(\alpha)=-\text{ }\sqrt[]{(1)/(\tan^2(\alpha)+1)} \\ \\ \rightarrow\cos ^{}(\alpha)=-\text{ }\sqrt[]{(1)/((-(12)/(5))^2+1)} \\ \\ \Rightarrow\cos (\alpha)=-(5)/(13) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x01vgc8lvp5c27f9hirlhhjlugao58cn37.png)
We also know that:

This way,

We can conclude that:

Now, let's take a closer look at beta. We know that:
![\begin{gathered} \sin ^2(\beta)=1-\cos ^2(\beta) \\ \rightarrow\sin (\beta)=\pm\text{ }\sqrt[]{1-\cos^2(\beta)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rzgo5er1hxywn5lroulyqx1uhfo43eje4j.png)
And since beta lies in quadrant 4, where sine is negative,
![\begin{gathered} \sin (\beta)=-\text{ }\sqrt[]{1-\cos^2(\beta)}\rightarrow\sin (\beta)=-\text{ }\sqrt[]{1-((3)/(5))^2} \\ \\ \Rightarrow\sin (\beta)=-(4)/(5)_{} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pesyu99u0hvueezhxd6vc19ghzpw7iuv3n.png)
This way, we can conclude that

Now, we'll use the identity from the begining:

With the values we've calculated:

This way,

Therefore, we can conclude that:
