Step-by-step explanation
A piecewise function is a function that is defined by different formulas or functions for each given interval.
So for the piecewise function given
![f(x)=\begin{cases}{(1)/(2)x+4,\text{ x}\leq-2} \\ {} \\ {-x,\text{ x>-2}}\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/wcni0ktteo1ltfviwkmt3p58i8rhah6ii8.png)
To plot the graph of the functions on the same axis
for the first function
![\begin{gathered} f(x)=(1)/(2)x+4 \\ we\text{ can find the value of f\lparen x\rparen, when x = -2,-3,-4} \\ when\text{ x=-2, f\lparen x\rparen=3} \\ when\text{ x=-3, f\lparen x\rparen=2.5} \\ when\text{ x=-4, f\lparen x\rparen=2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q5mk7qqtodghxpur7n6kgru6ftqa1efyse.png)
For the second function
![\begin{gathered} we\text{ can use when x = -1, y=-1} \\ when\text{ x=0, y=0} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i4xxmj6r3fvh0om714iiqqxjyx6fnfczgs.png)
We can plot the x and f(x) coordiantes as:
in selecting the correct answer, we will have graph A as the correct graph
The answer is option A