We need to simplify the expression:
![-2\sqrt[]{20}-2\sqrt[]{24}-2\sqrt[]{24}](https://img.qammunity.org/2023/formulas/mathematics/college/glffgfjwq4km5xhhkh5gery41phf45jjph.png)
We can start by grouping the second and third terms since they have the same factor:
![-2\sqrt[]{24}-2\sqrt[]{24}=(-2-2)\sqrt[]{24}=-4\sqrt[]{24}](https://img.qammunity.org/2023/formulas/mathematics/college/3h536zl3ym65cdo4532748w9eglv5f7nqu.png)
Then, we need to simplify:
![-2\sqrt[]{20}-4\sqrt[]{24}](https://img.qammunity.org/2023/formulas/mathematics/college/b3w1947d3w1cu5gvzragsvwae2e47saqqr.png)
Now, we can factor the number inside each square root:
![\begin{gathered} 20=2\cdot2\cdot5=2^2\cdot5 \\ \\ 24=2\cdot2\cdot2\cdot3=2^2\cdot6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xim2vqmzb8ix0ryyxciun4y431vfq6l40f.png)
And we can use the following properties:
![\begin{gathered} \sqrt[]{a.b}=\sqrt[]{a}\cdot\sqrt[]{b} \\ \\ \sqrt[]{n^(2)}=n,\text{ for }n\ge0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z3arm4frznx06o9t8qxcvn0r6x0qljt9wp.png)
Then, we obtain:
![\begin{gathered} \sqrt[]{20}=\sqrt[]{2^2\cdot5}=\sqrt[]{2^(2)}\cdot\sqrt[]{5}=2\sqrt[]{5} \\ \\ \sqrt[]{24}=\sqrt[]{2^2\cdot6}=\sqrt[]{2^(2)}\cdot\sqrt[]{6}=2\sqrt[]{6} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9ru5wp0dwobi9bbgrnmajrnh6v17cs6rb9.png)
Using the above results in the expression, we find:
![-2\sqrt[]{20}-4\sqrt[]{24}=-2\cdot2\sqrt[]{5}-4\cdot2\sqrt[]{6}=-4\sqrt[]{5}-4\cdot2\sqrt[]{6}](https://img.qammunity.org/2023/formulas/mathematics/college/3ypr6wuypk1oianuuprfu3umlplgseov8l.png)
Since both terms have the factor -4, we can group it to obtain:
![-4(\sqrt[]{5}+2\sqrt[]{6})](https://img.qammunity.org/2023/formulas/mathematics/college/7j8xgt3je8orx13q95wkxtmd5z543jz45m.png)
Therefore, a way to simplify the given expression is by writing it as:
![-4(\sqrt[]{5}+2\sqrt[]{6})](https://img.qammunity.org/2023/formulas/mathematics/college/7j8xgt3je8orx13q95wkxtmd5z543jz45m.png)