Answer:
D. tan(θ) = 3√7/7
Step-by-step explanation:
csc(θ) is equal to the hypotenuse over the opposite side, so if csc(θ) = -4/3, we can represent the angle with the following triangle
So, we can calculate the missing side using the Pythagorean theorem as follows
![\begin{gathered} x=\sqrt[]{4^2-3^2} \\ x=\sqrt[]{16-9} \\ x=\sqrt[]{7} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/81f7waak9k2ys0njtvap269l0ojc76yx85.png)
Now, the tangent of the angle is calculated as:
![\begin{gathered} \tan (\theta)=\frac{Opposite\text{ side}}{Adjacent\text{ side}} \\ \tan (\theta)=\frac{3}{\sqrt[]{7}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7x6tar0uucu9ax0shoe3hbuwutwa64tkq5.png)
Then, the tangent is equal to:
![\tan (\theta)=\frac{3}{\sqrt[]{7}}\cdot\frac{\sqrt[]{7}}{\sqrt[]{7}}=\frac{3\sqrt[]{7}}{7}](https://img.qammunity.org/2023/formulas/mathematics/college/nwcm5ykt0e6g42pcux1ugj909fza1qd0ff.png)
Therefore, the answer is
D. tan(θ) = 3√7/7