218k views
2 votes
A cube has a drag coefficient of 0.8. What would be the terminal velocity of a sugar cube 1 cm on a side in air ( = 1.2 kg/mº)? Take thedensity of sugar to be 2.0 x 103 kg/m3. im/s

User Sebo
by
4.6k points

1 Answer

4 votes

0.495 m/s

Step-by-step explanation

the formula for the terminal velocity is given by:


\begin{gathered} v=\sqrt[]{(2mg)/(\sigma AC)} \\ \text{where} \\ \end{gathered}

m is the mass

g is 9.81 m/s²

ρ is density

A is area

C is the drag coefficient

then

Step 1

Let's find the mass


\begin{gathered} \sigma=(m)/(v) \\ m=\sigma\cdot v \\ \text{mass}=(2\cdot10^3\frac{\operatorname{kg}}{m^3})\cdot(0.01m)^3 \\ \text{mass}=(2\cdot10^3\frac{\operatorname{kg}}{m^3})\cdot(1\cdot10^(-6)) \\ \text{mass}=2\cdot10^(-3)\operatorname{kg} \\ \text{mass}=0.002\text{ kg } \\ \text{Area}=(0.01\text{ m}\cdot0.01m)=0.0001m^2 \end{gathered}

now, replace


\begin{gathered} v=\sqrt[]{(2mg)/(\sigma AC)} \\ v=\sqrt[]{\frac{2(0.002kg)(9.81\text{ }(m)/(s^2))}{(2\cdot10^3\frac{\operatorname{kg}}{m^3})(0.0001m^2)0.8}} \\ v=\sqrt[]{\frac{0.03924\frac{\operatorname{kg}m}{s^2}}{0.16\frac{\operatorname{kg}}{m^{}}}} \\ v=\sqrt[]{0.2452(m^2)/(s^2)} \\ v=0.495\text{ m/s} \end{gathered}

hence, the answer is 0.495 m/s

A cube has a drag coefficient of 0.8. What would be the terminal velocity of a sugar-example-1
User Logiraptor
by
4.5k points